|本期目录/Table of Contents|

[1]董攀飞,徐志高*,吴 明,等.N263-HSCN体系负载有机相的反萃取行为研究[J].武汉工程大学学报,2022,44(01):31-35.[doi:10.19843/j.cnki.CN42-1779/TQ.202110005]
 DONG Panfei,XU Zhigao*,WU Ming,et al.Stripping for Loaded Organic Phase in N263-HSCN System[J].Journal of Wuhan Institute of Technology,2022,44(01):31-35.[doi:10.19843/j.cnki.CN42-1779/TQ.202110005]
点击复制

N263-HSCN体系负载有机相的反萃取行为研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年01期
页码:
31-35
栏目:
化学与化学工程
出版日期:
2022-02-28

文章信息/Info

Title:
Stripping for Loaded Organic Phase in N263-HSCN System
文章编号:
1674 - 2869(2022)01 - 0031 - 05
作者:
董攀飞 徐志高* 吴 明 沙傲阳 何正艳 瞿 军
中南民族大学资源与环境学院,催化转化与能源材料化学教育部重点实验室,资源转化与污染物控制国家民委重点实验室,催化材料科学湖北省重点实验室,湖北 武汉 430074
Author(s):
DONG Panfei XU Zhigao* WU Ming SHA Aoyang HE Zhengyan QU Jun
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission & Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
关键词:
负载有机相反萃取
Keywords:
zirconium hafnium loaded organic phase stripping
分类号:
TF841.4
DOI:
10.19843/j.cnki.CN42-1779/TQ.202110005
文献标志码:
A
摘要:
为开发N263-HSCN锆铪分离体系负载有机相的反萃剂和反萃工艺参数,分别采用HCl、H2SO4、HNO3、(NH42CO3、C2H2O4和C4H6O6等试剂作为反萃剂,研究了它们对N263-HSCN体系负载有机相的反萃行为,利用控制变量因素法探索了反萃剂的浓度、有机相和反萃水相的体积比对锆和铪反萃率和分离系数的影响规律。结果表明:反萃剂对锆的反萃率的大小顺序为C2H2O4 > H2SO4 > C4H6O6 >(NH42CO3 > HCl >HNO3,对铪的反萃率的大小顺序为H2SO4 >(NH42CO3 > C2H2O4 > C4H6O6 >HCl >HNO3。先采用3.0 mol/L的H2SO4作反萃剂,相比(O/A)为4/1对负载有机相进行反萃,锆和铪最大的反萃率分别为58.87%和4.60%,分离系数可达12.81,反萃后再选用6.0 mol/L 的H2SO4对铪进行洗脱,铪的洗脱率为92.39%,为开发反萃工艺提供理论指导。
Abstract:
To develop the stripping agents and stripping process parameters of loaded organic phase in N263-HSCN separation system of zirconium and hafnium, HCl, H2SO4, HNO3, (NH42CO3, C2H2O4 and C4H6O6 were used as stripping agents respectively, and their stripping behavior was studied. The effects of the concentration of stripping agents and the volume ratio of organic phase and stripping water phase on the stripping yields and separation factor of zirconium and hafnium were investigated with the control variable factor method. The results show that the orders of stripping yields of zirconium and hafnium by stripping agents are C2H2O4 > H2SO4 > C4H6O6 > (NH42CO3 > HCl > HNO3 and H2SO4 > (NH42CO3 > C2H2O4 > C4H6O6 > HCl > HNO3 respectively. When 3.0 mol/L H2SO4 is used as stripping agent, and the loaded organic phase is stripped at the phase volume ratio (O/A) of 4/1, the maximum stripping yields of zirconium and hafnium are 58.87% and 4.60% respectively, and the separation factor reaches 12.81. After stripping, 6.0 mol/L H2SO4 is used to elute hafnium, and its elution yield is 92.39%, which provides theoretical guidance for the development of stripping process.

参考文献/References:

[1] 李攀红,徐志高,池汝安,等. 湿法分离锆铪的研究进展[J]. 稀有金属,2016,40(5):499-508. [2] 王俊莲,付家帅,许文,等. 基于锆铪溶剂萃取分离的萃取剂性能[J]. 稀有金属,2020,44(6):658-667.[3] 林振汉. 用甲基异丁基酮萃取分离锆铪的工艺评价[J]. 稀有金属快报,2007,26(1):93-96.[4] BESSON P, GUERIN J, BRUN P, et al. Process for the separation of zirconium and hafnium tetrachlorides from mixtures thereof: US 4021531[P]. 1977-5-3.[5] MACDONALD D J, HENRY H G, BAUER D J. Purification of zirconyl sulfate by solvent extraction[R]. US:Department of the Interior,Bureau of Mines, 1984.[6] BANDA R, LEE M S. Solvent extraction for the separation of Zr and Hf from aqueous solutions[J]. Separation & Purification Reviews,2014,44(3):199-215.[7] AMARAL J C B S, SOUZA A L, MORAIS C A. Liquid-liquid separation of zirconium and hafnium from nitric liquor in order to obtain nuclear zirconium oxide using TBP as extractant[J]. Chemical Engineering Communications, 2019, 207(1):73-83.[8] TAGHIZADEH M, GHASEMZADEH R, ASHRAF-IZADEH S N, et al. Determination of optimum process conditions for the extraction and separation of zirconium and hafnium by solvent extraction[J]. Hydrometallurgy, 2008, 90(2/3/4): 115-120.[9] LARSSON K, BINNEMANS K. Separation of rare earths by split-anion extraction[J]. Hydrometallurgy, 2015, 156:206-214.[10] BHATTA B C, PANDA N, MISHRA S. Extraction of Zr(IV) from hydrochloric acid with tri-octyl amine and Cyanex 921 in kerosene[J]. International Journal of Minerals, Metallurgy, and Materials,2013,20(9):823-828.[11] 徐志高, 李攀红, 池汝安, 等. DIBK协萃体系负载有机相反萃行为研究[J]. 有色金属(冶炼部分), 2015(4):20-23.[12] PANDEY G, MUKHOPADHYAY S, RENJITH A U, et al. Recovery of Hf and Zr from slurry waste of zirconium purification plant using solvent extraction[J]. Hydrometallurgy, 2016, 163:61-68.[13] YADOLLAHI A, SABERYAN K, TORAB-MOSTAEDI M, et al. Solvent extraction separation of zirconium and hafnium from nitric acid solutions using mixture of Cyanex-272 and TBP[J]. Radiochimica Acta, 2018, 106(8):675-684.[14] CONRADIE E W, WESTHUIZEN D J V D, NEL J T, et al. The hafnium-selective extraction fom a zirconium(hafnium) heptafluoride ammonium solution using organophosphorus-based extractants[J]. Solvent Extraction and Ion Exchange,2018,36(7):658-673.[15] WANG L Y, LEE M S. A review on the aqueous chemistry of Zr(IV) and Hf(IV) and their separation by solvent extraction[J]. Journal of Industrial and Engineering Chemistry, 2016, 39:1-9.[16] RYABCHIKOV D, MAROV I, ERMAKOV A, et al. Stability of some inorganic and organic complex compounds of zirconium and hafnium[J]. Journal of Inorganic and Nuclear Chemistry,1964,26(6):965-980.[17] ZHAO J L, YANG T, ZHANG H, et al. Preferential extraction of hafnium over zirconium with D2EHPA through selective complexation of organic acids[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321(1): 333-339.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-10-10基金项目:国家自然科学基金(51774344,52104289);湖北省自然科学基金(2020CFB165);武汉市应用基础前沿项目(2019020701011449)作者简介:董攀飞,硕士研究生。Email:[email protected]*通讯作者:徐志高,博士,教授。E-mail: [email protected]引文格式:董攀飞, 徐志高, 吴明, 等. N263-HSCN体系负载有机相的反萃取行为研究[J]. 武汉工程大学学报,2022,44(1):31-35.
更新日期/Last Update: 2022-03-01