[1] SONI S. Trends in lipase engineering for enhanced biocatalysis[J]. Biotechnology and Applied Bio-chemistry, 2022, 69 (1): 265-272.[2] ALBAYATI S H, MASOMIAN M, ISHAK S N H,et al. Main structural targets for engineering lipase substrate specificity[J]. Catalysts, 2020, 10(7): 747.[3] SARMAH N, REVATHI D, SHEELU G, et al. Recent advances on sources and industrial applications of lipases[J]. Biotechnology Progress, 2018, 34(1): 5-28. [4] GAMAYUROVA V S, ZINOV’ EVA M E, SHNAIDER K L, et al. Lipases in esterification reactions: a review[J]. Catalysis in Industry, 2021, 13: 58-72.[5] KOGA Y, KATO K, NAKANO H, et al. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression[J]. Journal of Molecular Biology,2003, 331(3): 585-592. [6] PLEISS J, FISCHER M, SCHMID R D. Anatomy of lipase binding sites: the scissile fatty acid binding site[J]. Chemistry and Physics of Lipids, 1998, 93(1/2): 67-80.[7] CHEN H, MENG X, XU X Q, et al. The molecular basis for lipase stereoselectivity[J]. Applied Microbiology and Biotechnology,2018,102(8): 3487-3495. [8] 张锟, 曲戈, 刘卫东, 等. 工业酶结构与功能的构效关系[J]. 生物工程学报, 2019, 35(10):1806-1818.[9] XIONG W, LIU B, SHEN Y J, et al. Protein engineering design from directed evolution to de novo synthesis[J]. Biochemical Engineering Journal, 2021, 174: 108096.[10] 蔡海莺, 王珍珍, 张婷, 等. 微生物脂肪酶资源挖掘研究进展[J]. 食品科学, 2018, 39(7): 337-345.[11] 崔颖璐, 吴边. 计算机辅助蛋白结构预测及酶的计算设计研究进展[J]. 广西科学,2017,24(1):1-6.[12] LIU Q, XUN G H, FENG Y. The state-of-the-art strategies of protein engineering for enzyme stabilization[J]. Biotechnology Advances, 2019, 37(4): 530-537. [13] KORENDOVYCH I V. Rational and semirational protein design[M]. Methods in Molecular Biology, 2018, 1685: 15-23.[14] SILVA AMATTO I V, ROSA-GARZON N G, OLIVEIRA SIM?ES F A, et al. Enzyme engineering and its industrial applications. Biotechnology and Applied Biochemistry, 2021, 11(7): 1-21.[15] QU G, LI A T, ACEVEDO-ROCHA C G, et al. The crucial role of methodology development in directed evolution of selective enzymes[J]. Angewandte Chemie(International Edition),2020,59(32):13204-13231. [16] 陈珏,黄佳敏,燕天鹤,等. 随机突变文库构建与筛选研究进展[J].生物工程学报,2021,37(1):163-177.[17] CADWELL R C, JOYCE G F. Randomization of genes by PCR mutagenesis[J]. PCR Methods & Applications, 1992, 2(1): 28-33. [18] STEMMER W P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22): 10747-10751. [19] REETZ M T, ZONTA A, SCHIMOSSEK D C K, et al. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution[J]. Angewandte Chemie (International Edition), 1997, 36(24): 2830-2832. [20] MARKEL U, ESSANI K D, BESIRLIOGLU V, et al. Advances in ultrahigh-throughput screening for directed enzyme evolution[J]. Chemical Society Reviews, 2020, 49(1): 233-262. [21] REETZ M T. Biocatalysis in organic chemistry and biotechnology: past, present, and future[J]. Journal of the American Chemical Society, 2013, 135(34): 12480-12496. [22] RUSSELL H, BARBARA K, RANDALL S. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions[J]. Nucleic Acids Research, 1988, 16(15): 7351-7367. [23] LI G L, XU L, ZHANG H J, et al. A De Novo designed esterase with p-Nitrophenyl acetate hydrolysis activity[J]. Molecules, 2020, 25(20): 4658.[24] MOHARANA T R, RAO N M. Substrate structure and computation guided engineering of a lipase for omega-3 fatty acid selectivity[J]. PLoS One, 2020, 15(4): e0231177.[25] REETZ M T, BOCOLA M, CARBALLEIRA JD, et al. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test[J]. Angewandte Chemie International Edition, 2005, 44(27): 4192-4196. [26] ACEVEDO-ROCHA C G, HOEBENREICH S, REETZ M T. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution[M]. Methods in Molecular Biology,2014,1179:103-128. [27] SUN Z T, LONSDALE R, ILIE A, et al. Catalytic asymmetric reduction of difficult-to-reduce ketones: triple code saturation mutagenesis of an alcohol dehydrogenase[J]. ACS Catalysis, 2016, 6(3): 1598-1605.[28] SUN Z T, LONSDALE R, WU L, et al. Structure-guided triple-code saturation mutagenesis: efficient tuning of the stereoselectivityof an epoxide hydrolase[J]. ACS Catalysis, 2016, 6(3): 1590-1597.[29] LI D Y, WU Q, REETZ M T. Focused rational iterative site-specific mutagenesis (FRISM)(M). Methods in Enzymology, 2020, 643: 225-242.[30] XU J, CEN Y X, SINGH W, et al. Stereodivergent protein engineering of a lipase to access all possible stereoisomers of chiral esters with two stereocenters[J]. Journal of the American Chemical Society, 2019, 141(19): 7934-7945. [31] SCHULZ T, PLEISS J, SCHMID R D. Stereoselec-tivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model[J]. Protein Science, 2010, 9(6): 1053-1062. [32] 蔡玉贞, 白巧燕, 苏敏, 等. 脂肪酶底物结合口袋的分子改造策略及进展[J]. 生物技术通报, 2020, 36(11): 173-179.[33] BORNSCHEUER U T,KAZLAUSKAS R J. Lipases and esterases: sections 5.1-5.2[M]. Berlin:WileyVCH Verlag GmbH & Co. KGaA, 2006. [34] GU J L, LIU J, YU H W. Quantitative prediction of enantioselectivity of Candida antarctica lipase B by combining docking simulations and quantitative structure-activity relationship (QSAR) analysis[J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 72(3/4): 238-247.[35] WU Q, SONI P, REETZ M T. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope[J]. Journal of the American Chemical Society,2013,135(5):1872-1881. [36] QIN B, LIANG P, JIA X, et al. Directed evolution of Candida antarctica lipase B for kinetic resolution of profenesters[J]. Catalysis Communications, 2013, 38: 1-5. [37] SHEN J W, QI J M, ZHANG X J, et al. Significantly increased catalytic activity of Candida antarctica lipase B for the resolution of cis (+/-)- dimethyl 1-acetylpiperidine-2, 3-dicarboxylate[J]. Catalysis Science & Technology, 2018, 8(18): 4718-4725. [38] MARíA P D,CARBONI-OERLEMANS C,TUIN B, et al. Biotechnological applications of Candida antarctica lipase A: state-of-the-art[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 37(1/2/3/4/5/6): 36-46. [39] ENGSTR?M K, NYHLéN J, SANDSTR?M A G, et al. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters[J]. Journal of the American Chemical Society, 2010, 132(20): 7038-7042. [40] FRUSHICHEVA M P, WARSHEL A. Towards quantitative computer-aided studies of enzymatic enantioselectivity: the case of Candida antarctica lipase A[J]. ChemBioChem,2012,13(2): 215-223. [41] HIROSE Y, KARIYA K, NAKANISHI Y. Inversion of enantioselectivity in hydrolysis of 1, 4-dihydropyridines by point mutation of lipase PS[J]. Tetrahedron Letters, 1995, 36(7): 1063-1066.[42] PRASAD S, BOCOLA M, REETZ M T. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis[J]. Chemphyschem,2011,12(8): 1550-1557. [43] NI Z, ZHOU P, JIN X. Integrating in silico and in vitro approaches to dissect the stereoselectivity of Bacillus subtilis lipase a toward ketoprofen vinyl ester[J]. Chemical Biology & Drug Design, 2011, 78(2): 301-308. [44] MANETTI F, MILETO D, CORELLI F, et al. Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase[J]. Biochimica Et Biophysica Acta, 2000, 1543(1): 146-158. [45] BORDES F, CAMBON E, DOSSAT-LéTISSE V, et al. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site[J]. ChemBioChem, 2009, 10(10): 1705-1713. [46] LIU D N, TRODLER P, EIBEN S, et al. Rational design of Pseudozyma antarctica lipase B yielding a general esterification catalyst[J]. Chembiochem, 2010, 11(6): 789-795. [47] EMA T, FUJII T, OZAKI M, et al. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism[J]. Chemical Communications, 2005, 37: 4650-4651. [48] EMA T, KAMATA S, TAKEDA M, et al. Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates[J]. Chemical Communications,2010,46(30):5440-5442. [49] EMA T, NAKANO Y, YOSHIDA D, et al. Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state[J]. Organic & Biomolecular Chemistry,2012,10(31):6299-6308. [50] AILEEN F S, NIKOLAJ O, THORSTEN E, et al. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution[J]. Protein Engineering Design & Selection, 2005, 18(11): 509-514. [51] QIAN Z, FIELDS C J, LUTZ S. Investigating the structural and functional consequences of circular permutation on lipase B from Candida antarctica[J]. Chembiochem, 2007, 8(16): 1989-1996.[52] L?FGREN J, G?RBE T, OSCHMANN M, et al. Transesterification of a tertiary alcohol by engineered Candida antarctica lipase?A[J]. Chembiochem, 2019, 20(11):1438-1443. [53] CHEN H, WU J P, YANG L R, et al. Improving Pseudomonas alcaligenes lipase’s diastereopreference in hydrolysis of diastereomeric mixture of menthyl propionate by site-directed mutagenesis[J]. Biotechnology and Bioprocess Engineering, 2014, 19(4): 592-604.[54] WIJMA H J, FLOOR R J, BJELIC S, et al. Enantioselective enzymes by computational design and in silico screening[J]. AngewandteChemie (International Edition), 2015, 54(12): 3726-30. [55] KHERSONSKY O, LIPSH R, AVIZEMER Z, et al. Automated design of efficient and functionally diverse enzyme repertoires[J]. Molecular Cell, 2018, 72(1): 178-186.[56] ST-JACQUES A D, MARIE-èVE C E,CHICA R A. Computational design of multi-substrate enzyme specificity[J]. ACS Catalysis, 2019,9(6):5480-5485.
[1]柯彩霞,徐德蛟,闫云君*,等.生物酶法拆分手性药物的研究进展[J].武汉工程大学学报,2016,38(06):517.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 001]
KE Caixia,XU Dejiao,YAN Yunjun*,et al.Advance in Enzymatic Resolution of Chiral Drugs[J].Journal of Wuhan Institute of Technology,2016,38(02):517.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 001]