[1] WANG F X, WU X W, YUAN X H ,et al. Latest advances in supercapacitors:from new electrode materials to novel device designs [J]. Chemical Society Reviews,2017,46(22):6816-6854. [2] 郭慰彬,陈嘉炼,刘金玲,等. 超级电容器用碳基电极材料研究进展[J]. 电子元件与材料,2019,38(1):1-8. [3] IRO Z S,SUBRAMANI C,DASH S S. A brief review on electrode materials for supercapacitor [J]. International Journal of Electrochemical Science,2016,11(12):10628-10643. [4] THEERTHAGIRI J,SENTHIL R A,NITHYADHAR-SENI P,et al. Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage [J]. Ceramics International,2020,46(10):14317-14345. [5] GU W T,YUSHIN G. Review of nanostructured carbon materials for electrochemical capacitor applications:advantages and limitations of activated carbon,carbide-derived carbon,zeolite-templated carbon,carbon aerogels,carbon nanotubes,onion-like carbon,and graphene [J]. WIREs:Energy and Environment,2014,3(5):424-473. [6] FIC K, PLATEK A, PIWEK J, et al. Sustainable materials for electrochemical capacitors [J]. Materials Today,2018,21(4):437-454. [7] WANGY F, ZHANG L, HOU H Q, et al. Recent progress in carbon-based materials for supercapacitor electrodes:a review [J]. Journal of Materials Science,2021,56(1):173-200. [8] GóMEZ-URBANO J L, MORENO-FERNáDEZ G,ARNAIZ M,et al. Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors [J]. Carbon,2020,162:273-282. [9] SUN M Q, WANG G C, LI X W, et al. Irradiation preparation of reduced graphene oxide/carbon nanotube composites for high-performance supercapacitors [J]. Journal of Power Sources,2014,245:436-444. [10] ZHANG Y H, CAO X J,LI Z W, et al. Co-assembly of functional graphene and multiwall carbon nanotubes for supercapacitors by a vertical deposition technique [J]. Applied Physics A,2016,122(6):575:1-7. [11] GOVINDASAMY M,WANG S F,KUMARAVEL S,et al. Facile synthesis of copper sulfide decorated reduced graphene oxide nanocomposite for high sensitive detection of toxic antibiotic in milk [J]. Ultrasonics Sonochemistry,2019,52:382-390. [12] ZHU Y R, WU Z B, JING M J,et al. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors [J]. Journal of Power Sources,2015,273:584-590. [13] RAMACHANDRAN R, SARANYA M, KOLLU P,et al. Solvothermal synthesis of zinc sulfide decorated graphene(ZnS/G) nanocomposites for novel supercapacitor electrodes [J]. Electrochimica Acta,2015,178:647-657. [14] CHANG J L, ZANG S Q, LIANG W F, et al. Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor [J]. Journal of Colloid and Interface Science,2021,590:114-124. [15] CHEN F, JI Y J, REN F Y, et al. Three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors [J]. Journal of Colloid and Interface Science,2021,586:797-806. [16] NASKAR P,MAITI A,CHAKRABORTY P,et al. Chemical supercapacitors:a review focusing on metallic compounds and conducting polymers [J]. Journal of Materials Chemistry A,2021,9(4):1970-2017. [17] SOWMIYA G, VELRAJ G. Designing a ternary composite of PPy-PT/TiO2 using TiO2,and multipart-conducting polymers for supercapacitor application [J]. Journal of Materials Science: Materials in Electronics,2020,31(17):14287-14294. [18] NA R Q,LU N,LI L B,et al. A robust conductive polymer network as a multi-functional binder and conductive additive for supercapacitors [J]. ChemElectroChem,2020,7(14):3056-3064. [19] GONG H M, HAO X Q, LI H Y, et al. A novel materials manganese cadmium sulfide/cobalt nitride for efficiently photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2021,585:217-228. [20] KANADE C K,SEOK H,KANADE V K,et al. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors [J]. ACS Applied Materials & Interfaces,2021,13(7):8710-8718. [21] ZHANG J C,ZHANG D J,ZHANG R C,et al. Facile synthesis of mesoporous and thin-walled Ni-Co sulfide nanotubes as efficient electrocatalysts for oxygen evolution reaction [J]. ACS Applied Energy Materials,2018,1(2):495-502. [22] LI X T,WAN Y Y,WU X J. First-principles study of ultrathin molybdenum sulfides nanowires:electronic and catalytic hydrogen evolution properties [J]. Chinese Journal of Chemical Physics,2019,32(2):267-272. [23] ZHAO S M,LI J L,CHEN H X,et al. Synthesis of Bi2S3/MoS2 nanorods and their enhanced electrochemical performance for aluminum ion batteries [J]. Journal of Electrochemical Energy Conversion and Storage,2019,17(3):031010:1-8. [24] ZHANG X, DING P, SUN Y F, et al. CoMoS3.13 nanosheets grafted on B,N co-doped graphene nanotubes as bifunctional catalyst for efficient water electrolysis [J]. Journal of Alloys and Compounds,2018,731:403-410. [25] TONG H, BAI W L, YUE S H, et al. Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors [J]. Journal of Materials Chemistry A,2016,4(29):11256-11263. [26] SUN Y L,HUANG C Q,SHEN J L,et al. One-step construction of a transition-metal surface decorated with metal sulfide nanoparticles:ahigh-efficiency electrocatalyst for hydrogen generation [J]. Journal of Colloid and Interface Science,2020,558:1-8. [27] MOHAMMADI A, ARSALANI N, TABRIZI A G,et al. Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors [J]. Chemical Engineering Journal,2018,334:66-80. [28] WEI Z M, LI B, XIA C X, et al. Various structures of 2D transition-metal dichalcogenides and their applications [J]. Small Methods,2018,2(11):1800094:1-19. [29] ZHOU M F,WANG W H,LU J P,et al. How defects influence the photoluminescence of TMDCs [J]. Nano Research,2021,14(1):29-39. [30] PUJARI R B,LOKHANDE A C,SHELKE A R,et al. Chemically deposited nano grain composed MoS2 thin films for supercapacitor application [J]. Journal of Colloid and Interface Science,2017,496:1-7. [31] LIANG A Q,ZHU D H,XU L M,et al. Fabrication of flexible PVA/polyaniline/WS2 composite film and its high capacitance behaviors [J]. International Journal of Electrochemical Science,2020,15(10):10541-10549. [32] LONKAR S P,PILLAI V V,PATOLE S P,et al. Scalable in situ synthesis of 2D-2D-type graphene wrapped SnS2 nanohybrids for enhanced supercapacitor and electrocatalytic applications [J]. ACS Applied Energy Materials,2020,3(5):4995-5005. [33] MAYORGA-MARTINEZ C C,AMBROSI A,ENG A Y S,et al. Transition metal dichalcogenides(MoS2,MoSe2,WS2 and WSe2) exfoliation technique has strong influence upon their capacitance [J]. Electrochemistry Communications,2015,56:24-28. [34] BISSETT M A, WORRALL S D, KINLOCH I A,et al. Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors [J]. Electrochimica Acta,2016,201:30-37. [35] LIN J H,ZHONG Z X,WANG H H,et al. Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery [J]. Journal of Power Sources,2018,407:6-13. [36] SHEN L F,YU L,WU H B,et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties [J]. Nature Communications,2015,6:6694:1-8. [37] LI L,HUI K S,HUI K N,et al. Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors [J]. Journal of Materials Chemistry A,2017,5(37):19687-19696. [38] CHIA X Y, ENG A Y S, AMBROSI A, et al. Electrochemistry of nanostructured layered transition-metal dichalcogenides [J]. Chemical Reviews,2015,115(21):11941-11966. [39] WU J, SHI X L, SONG W J, et al. Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4(M=Ni,Fe,Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors [J]. Nano Energy,2018,45:439-447. [40] NEUPANE G P,TRAN M D,YUN S J,et al. Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics [J]. ACS Applied Materials & Interfaces,2017,9(13):11950-11958. [41] CHEN H C, JIANG J J,ZHAO Y D,et al. One-pot synthesis of porous nickel cobalt sulphides:tuning the composition for superior pseudocapacitance [J]. Journal of Materials Chemistry A,2015,3(1):428-437. [42] CAI W H, LAI T, LAI J W, et al. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density [J]. Scientific Reports,2016,6:26890:1-9. [43] PENG X,CAO H L,QIN Z H,et al. A simple and scalable strategy for preparation of high density graphene for high volumetric performance supercapacitors [J]. Electrochimica Acta,2019,305:56-63. [44] HUANG K J, ZHANG J Z, LIU Y, et al. Synthesis of reduced graphene oxide wrapped-copper sulfide hollow spheres as electrode material for supercapacitor [J]. International Journal of Hydrogen Energy,2015,40(32):10158-10167. [45] DE B, KUILA T, KIM N H, et al. Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor [J]. Carbon,2017,122:247-257. [46] LU J H, LIAN F, GUAN L L,et al. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages [J]. Journal of Materials Chemistry A,2019,7(3):991-997. [47] WANG Y F, ZHAO S X, YU L, et al. Design of multiple electrode structure based on nano Ni3S2 and carbon nanotubes for high performance supercapacitor [J]. Journal of Materials Chemistry A,2019,7(13):7406-7414. [48] NIAZ N A, SHAKOOR A, IMRAN M, et al. Enhanced electrochemical performance of MoS2/PPy nanocomposite as electrodes material for supercapacitor applications [J]. Journal of Materials Science:Materials in Electronics,2020,31(14):11336-11344. [49] LIU Y P, QI X H, LI L, et al. MOF-derived PPy/carbon-coated copper sulfide ceramic nanocomposite as high-performance electrode for supercapacitor [J]. Ceramics International,2019,45(14):17216-17223. [50] WANG L, BO M L, GUO Z C, et al. Construction of ultra-stable trinickeldisulphide(Ni3S2)/polyaniline (PANI) electrodes based on carbon fibers for high performance flexible asymmetric supercapacitors [J]. Journal of Colloid and Interface Science,2020,577:29-37. [51] LIU X B, WU Z P, YIN Y H. Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors [J]. Chemical Engineering Journal,2017,323(4):330-339.
[1]杨 文,陆 慧,张 芳,等.甲基橙修饰石墨烯的制备及电容性能[J].武汉工程大学学报,2015,37(05):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
,,et al.Preparation and capacitive properties of methyl orange modified graphene[J].Journal of Wuhan Institute of Technology,2015,37(02):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
[2]张阐娟,文小玲*,李康康,等.超级电容器恒压充电的控制策略研究[J].武汉工程大学学报,2016,38(1):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
ZHANG Chanjuan,WEN Xiaoling*,LI Kangkang,et al.Constant Voltage Control Scheme of Super Capacitor Charging[J].Journal of Wuhan Institute of Technology,2016,38(02):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
[3]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(02):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[4]朱珍妮,熊惠之,喻湘华,等.氮掺杂石墨烯/聚苯胺复合凝胶的制备与性能[J].武汉工程大学学报,2017,39(05):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
ZHU Zhenni,XIONG Huizhi,YU Xianghua,et al. Preparation of Nitrogen-Doped Graphene/Polyaniline Composite Hydrogels and Their Performance[J].Journal of Wuhan Institute of Technology,2017,39(02):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
[5]李 阳,邱唯楚,蔡 卓,等.聚吡咯/石墨烯复合水凝胶的制备与性能[J].武汉工程大学学报,2018,40(05):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
LI Yang,QIU Weichu,CAI Zhuo,et al.Preparation and Properties of Polypyrrole/Graphene Compoiste Hydrogels[J].Journal of Wuhan Institute of Technology,2018,40(02):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
[6]郭 畅,郑葛花,张媛媛,等.多孔石墨烯的制备及其在超级电容器中的应用[J].武汉工程大学学报,2019,(02):103.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]
GUO Chang,ZHENG Gehua,ZHANG Yuanyuan,et al.Fabrication of Holey Graphene and Its Application in Supercapacitors[J].Journal of Wuhan Institute of Technology,2019,(02):103.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]
[7]杨清银,吕 彦,李 成,等.聚苯胺水凝胶衍生碳/二氧化锰复合材料的合成与电化学性能[J].武汉工程大学学报,2021,43(05):514.[doi:10.19843/j.cnki.CN42-1779/TQ.202012002]
YANG Qingyin,Lü Yan,LI Cheng,et al.Synthesis of Polyaniline Hydrogel Derived Carbon/Manganese Dioxide Composite and Their Electrochemical Performance[J].Journal of Wuhan Institute of Technology,2021,43(02):514.[doi:10.19843/j.cnki.CN42-1779/TQ.202012002]
[8]陈惠燕,何明宏,李 亮*,等.三维硫氮双掺杂石墨烯/二氧化锰复合水凝胶的制备及性能研究[J].武汉工程大学学报,2022,44(03):282.[doi:10.19843/j.cnki.CN42-1779/TQ.202008026]
CHEN Huiyan,HE Minghong,LI Liang*,et al.Preparation and Properties of Three Dimensional S/N-Codoped Graphene/MnO2 Composite Hydrogels[J].Journal of Wuhan Institute of Technology,2022,44(02):282.[doi:10.19843/j.cnki.CN42-1779/TQ.202008026]