[2] 郭佳奇. 岩溶隧道防突厚度及突水机制研究[D]. 北京:北京交通大学,2011.
[3] GAO C L, LI L P, ZHOU Z Q, et al. Peridynamics simulation of water inrush channels evolution process due to rock mass progressive failure in Karst tunnels [J]. International Journal of Geomechanics,2021,21(4):04021028:1-15.
[4] CHEN G B,QIN Z C,ZHANG G H,et al. Characteris-tics and mechanical analysis of the collapsed accumulation body in the underground fault fracture zone [J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2021,43(18):2297-2318.
[5] 刘远鹏,邓荣斌,王子茂,等. 岩溶区特大断面小净距隧道群综合探测成果分析[J]. 武汉工程大学学报,2020,42(5):546-551.
[6] 李术才. 隧道突水突泥灾害源超前地质预报理论与方法[M]. 北京:科学出版社,2015.
[7] 聂韬译,浦海,刘桂宏,等. 渗流-应力耦合下的裂隙岩体劈裂模型研究[J]. 采矿与安全工程学报,2015,32(6):1026-1030,1036.
[8] 李世愚,和泰名,尹祥础. 岩石断裂力学[M]. 北京:科学出版社,2015.
[9] 赵延林,曹平,马文豪,等. 岩体裂隙渗流-劈裂-损伤耦合模型及应用[J]. 中南大学学报(自然科学版),2017,48(3):794-803.
[10] 李利平,李术才,张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. 岩土力学,2010,31(2):523-528.
[11] 郑安兴,罗先启,陈振华. 基于扩展有限元法的岩体水力劈裂耦合模型[J]. 岩土力学,2019,40(2):799-808.
[12] 李利平,朱宇泽,周宗青,等. 隧道突涌水灾害防突厚度计算方法及适用性评价[J]. 岩土力学,2020,41(增刊1):41-50,170.
[13] 曾艺. 岩溶隧道岩盘安全厚度计算方法及突水灾害发生机理研究[D]. 成都:西南石油大学,2015.
[14] 孟凡树,王迎超,焦庆磊,等. 断层破碎带突水最小安全厚度的筒仓理论分析[J]. 哈尔滨工业大学学报,2020,52(2):89-95.
[15] 于杰绪. 岩溶隧道突水涌泥风险评估及围岩稳定性的影响研究[D]. 西安:长安大学,2018.
[16] 吴祖松,李松,涂义亮,等. 统一强度理论下掌子面防突安全厚度理论研究[J]. 地下空间与工程学报,2020,16(6):1705-1710,1721.
[17] 郭佳奇,李宏飞,陈帆,等. 岩溶隧道掌子面防突厚度理论分析[J]. 地下空间与工程学报,2017,13(5):1373-1380.
[18] 孙谋,刘维宁. 高风险岩溶隧道掌子面突水机制研究[J]. 岩土力学,2011,32(4):1175-1180.
[19] 聂一聪. 富水岩溶隧道与隐伏溶洞间安全距离预测研究[D]. 北京:北京交通大学,2016.
[20] 孙尚渠. 复杂形态溶洞精细化表征及其对盾构隧道施工围岩稳定性的影响研究[D]. 济南:山东大学,2019.
[21] PENG S J,ZHANG Z N,LI C F,et al. Simulation of water flow in fractured porous medium by using discretized virtual internal bond[J]. Journal of Hydrology,2017,555:851-868.
[22] CHEN H M, ZHAO Z Y, SUN J P, et al. Coupled hydro-mechanical model for fractured rock masses using the discontinuous deformation analysis[J]. Tunnelling and Underground Space Technology,2013,38:506-516.
[23] XUE Y G,LI G K,WANG X K,et al. Analysis and optimization design of submarine tunnels crossing fault fracture zones based on numerical simulation [J]. Marine Georesources & Geotechnology,2020,38(9):1106-1117.
[24] WU J, JIA C, ZHANG L W. Expansion of water inrush channel by water erosion and seepage force [J]. International Journal of Geomechanics,2021,21(7):04021121:1-12.
[25] SONG J, CHEN D Y, WANG J, et al. Evolution pattern and matching mode of precursor information about water inrush in a Karst tunnel [J]. Water,2021,13(11):1579:1-14.
[26] 杨艳,常晓林,周伟,等. 裂隙岩体水力劈裂的颗粒离散元数值模拟[J]. 四川大学学报(工程科学版),2012,44(5):78-85.
[27] BAI J W,DUAN S L,LIU R T,et al. Evolution of delayed water inrush in fault fracture zone considering time effect [J]. Arabian Journal of Geosciences,2021,14(11):1001:1-12.
[28] 赵宁. 深埋隧道断层破碎带突水时滞效应研究[D]. 徐州:中国矿业大学,2019.
[29] 李浪,陈显波,程金星,等. 深长隧道突涌水灾害防突岩盘模型试验研究[J]. 岩石力学与工程学报,2020,39(增刊2):3278-3285.
[30] LIU J,LI Z P,ZHANG X,et al. Analysis of water and mud inrush in tunnel fault fracture zone—a case study of Yonglian tunnel [J]. Sustainability,2021,13(17):9585:1-17.
[31] FU H L,AN P T,CHENG G W,et al. Calculation of the safety thickness of water inrush with tunnel axis orthogonal to fault [J]. Arabian Journal of Geosciences,2021,14(11):931:1-11.
[32] 孟如真,胡少华,陈益峰,等. 高渗压条件下基于非达西流的裂隙岩体渗透特性研究[J]. 岩石力学与工程学报,2014,33(9):1756-1764.
[33] 周毅,李术才,李利平,等. 隧道充填型岩溶管道渗透失稳突水机制三维流-固耦合模型试验研究[J]. 岩石力学与工程学报,2015,34(9):1739-1749.
[34] FU H L,AN P T,CHEN L,et al. Analysis of tunnel water inrush considering the influence of surrounding rock permeability coefficient by excavation disturbance and ground stress [J]. Applied Sciences,2021,11(8):3645:1-14.