[2] VIMALA J, NATESAN M, KANNAN K. Corrosion of electronics contact metals in urban industrial environment[J]. Journal of Metallurgy and Materials Science, 2009, 51(4):287-295.
[3] CONGLETON J, CHARLES E A, SUI G. Review on effect of cyclic loading on environmental assisted cracking of alloy 600 in typical nuclear coolant waters[J]. Corrosion Science, 2001, 43(12):2265-2279.
[4] CHENG J, PANJ S, WANG T Q, et al. Micro-galvanic corrosion of Cu/Ru couple in potassium periodate (KIO4) solution[J]. Corrosion Science, 2018, 137(5):184-193.
[5] 陈兴伟, 吴建华, 王佳, 等. 电偶腐蚀影响因素研究进展[J]. 腐蚀科学与防护技术, 2010, 22(4):363-366.
[6] FAN X L, CHEN Y X, ZHANG J X, et al. Galvanic corrosion behavior of copper-drawn steel for grounding grids in the acidic red soil simulated solution[J]. ActaMetallurgicaSinica-English Letters, 2020, 33(11):1571-1582.
[7] PEI Z B, ZHANG D W, ZHI Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning[J]. Corrosion Science, 2020, 170:108697:1-9.
[8] CONSEIL-GUDLA H, JELLESEN M S, AMBAT R. Printed circuit board surface finish and effects of chloride contamination, electric field, and humidity on corrosion reliability[J]. Electronic Materials Letters,2017,46(2):817-825.
[9] 胡露露, 赵旭阳, 刘盼, 等. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4):342-350.
[10] HUANG H L, BU F R,TIAN J, et al. Influence of direct current electric field on corrosion behavior of tin under a thin electrolyte layer[J]. Journal of Electronic Materials, 2017, 46(12):6936-6946.
[11] YANG W L, LIU Z Q, HUANG H L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water[J]. Corrosion Science, 2021, 188(10):109562:1-15.
[12] HU S B, LIU R, LIU L, et al. Influence of tempera-ture and hydrostatic pressure on the galvanic corrosion between 90/10 Cu-Ni and AISI 316L stainless steel[J]. Journal of Materials Research and Technology, 2021, 13:1402-1415.
[13] ZHOU H R, LI X G, MA J, et al. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Materials Science and Engineering: B, 2009, 162(1):1-8.
[14] HUANG H L, PAN Z Q, GUO X P, et al. Effects of direct current electric field on corrosion behaviour of copper, Cl-ion migration behaviour and dendrites growth under thin electrolyte layer[J]. Transactions of Nonferrous Metals Society of China, 2014,24(1):285-291.
[15] LIAO X N,CAO F H, ZHENG L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corrosion Science, 2011, 53(10):3289-3298.
[16] HUANG H L, DONG Z H, CHEN Z Y, et al. The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer[J]. Corrosion Science, 2011, 53(4):1230-1236.
[17] HUANG H L, PAN Z Q, QIU Y B, et al. Electrochemical corrosion behaviour of copper under periodic wet-dry cycle condition[J]. Microelectronics Reliability, 2013, 53(8):1149-1158.
[18] HERNáNDEZR P B, PáSZTI Z, DE MELOHG, et al.Chemical characterization and anticorrosion properties of corrosion products formed on pure copper in synthetic rainwater of Rio de Janeiro and S?oPaulo[J]. Corrosion Science, 2010, 52(3):826-837.
[19] AMBAT R, M?LLERP. Corrosion investigation of material combinations in a mobile phone dome-key pad system[J]. Corrosion Science, 2007, 49(7):2866-2879.
[20] KHOSHALAN H A, SHAKERI J, NAJMODDINI I,et al. Forecasting copper price by application of robust artificial intelligence techniques [J]. Resources Policy, 2021, 73:102239:1-11.
[21] ARRAM, SHANGGUAND K, XIED J, et al. Study of immersion silver and tin printed-circuit-board surfacefinishes in lead-free solder applications[J]. Electronic Materials Letters, 2004, 33(9):977-990.
[22] WANGW Q, CHOUBEYA, AZARIANM H, et al. An assessment of immersion silver surfacefinish for lead-free electronics[J]. Electronic Materials Letters, 2009, 38(6):815-827.
[23] HUANG H L, BUF R. Correlations between the inhibition performances and the inhibitor structures of some azoles on the galvanic corrosion of copper coupled with silver in artificial seawater[J]. Corrosion Science, 2020, 165:108413:1-17.
[24] BUF R, LI J N, HUANGH L. Effects of electrolyte thickness, chloride ion concentration, and an external direct current electric field on corrosion behaviour of silver under a thin electrolyte layer[J]. Corrosion Engineering, Science and Technology, 2018, 54(2):1743-2782.
[25] HUANGH L, BUF R. The influence of different locations on copper corrosion with different external electric fields under a chloride-containing thin electrolyte layer[J]. Corrosion Engineering, Science and Technology, 2019, 54(3):257-265.
[26] WANG Z Z, LI Y Y,ZHANG G A. Inhibitive effects of inhibitors on the galvanic corrosion between N80 carbon steel and 13Cr stainless steel under dynamic supercritical CO2 conditions[J]. Corrosion Science, 2019, 146:121-133.
[27] WEN L, JIN Y, CHENG J, et al. Galvanic corrosion behaviour of zinc/steel couple under thin electrolyte layer[J]. Journal of Electrochemical Society, 2014, 58(29):13-24.
[28] HUANG H L, PAN Z Q, GUO X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corrosion Science, 2013, 75:100-105.
[29] FANG D J, MAO X H, ZHANG Y M, et al. Prepara-tion of non-chromium polymer films on zinc for corrosion protection due to a compound effect between silane and cerium salt[J]. Anti-Corrosion Methods and Materials, 2009, 56(4):226-231.
[30] Nú?EZL, REGUERAE,CORVO F, et al. Corrosion of copper in seawater and its aerosols in a tropical island[J]. Corrosion Science, 2005, 47(2):461-484.