[2] 王润民,桑农,丁丁,等.自然场景图像中的文本检测综述[J].自动化学报,2018,44(12):2113-2141.
[3] 白翔,杨明锟,石葆光,等.基于深度学习的场景文字检测与识别[J].中国科学:信息科学,2018,48(5):531-544.
[4] 郭闯,邱晓晖.基于BLSTM网络的改进EAST文本检测算法[J].计算机技术与发展,2020,30(7):21-24.
[5] SHI B G, BAI X, BELONGIE S. Detecting oriented text in natural images by linking segments[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu: IEEE Computer Society, 2017: 2550-2558.
[6] 许光宇,尹孟园.基于空间通道注意力的改进SSD目标检测算法[J].光电子·激光,2021,32(9):970-978.
[7] 郝聚涛,段静文,陈超,等.一种基于CTPN网络的文档图像标题检测算法[J].电子技术与软件工程,2021(5):175-176.
[8] TANG J, YANG Z B, WANG Y P, et al. Seglink++: detecting dense and arbitrary-shaped scene text by instance-aware component grouping[J]. Pattern recognition, 2019, 96: 106954.
[9] LONG S B, RUAN J Q, ZHANG W J, et al. Textsnake: a flexible representation for detecting text of arbitrary shapes[C]//Proceedings of the European conference on computer vision (ECCV). Munich: Springer, 2018: 20-36.
[10] 刘会江,曾浩,陈阳.基于DenseNet自然场景文本检测[J].计算机工程与设计,2020,41(8):2201-2206.
[11] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13713-13722.
[12] 李克文,李新宇.基于SENet改进的Faster R-CNN行人检测模型[J].计算机系统应用,2020,29(4):266-271.
[13] 杨锶齐,易尧华,汤梓伟,等.嵌入注意力机制的自然场景文本检测方法[J].计算机工程与应用,2021,57(24):185-191.
[14] LIU J J, HOU Q B, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10096-10105.
[15] LOULOUDIS G, STAMATOPOULOS N, GATOS B. ICDAR 2011 writer identification contest[C]//2011 International Conference on Document Analysis and Recognition. Beijing: IEEE, 2011: 1475-1479.
[16] KARATZAS D, SHAFAIT F, UCHIDA S, et al. ICDAR 2013 robust reading competition[C]//2013 12th International Conference on Document Analysis and Recognition. Washington: IEEE, 2013: 1484-1493.
[17] LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 5909-5918.
[18] 杨剑锋,王润民,何璇,等.基于FCN的多方向自然场景文字检测方法[J].计算机工程与应用,2020,56(2):164-170.
[19] 易尧华,何婧婧,卢利琼,等.顾及目标关联的自然场景文本检测[J].中国图象图形学报,2020,25(1):126-135.
[20] CHENG C K, CHAN C S, LIU C L. Total-text: toward orientation robustness in scene text detection[J]. International Journal on Document Analysis and Recognition (IJDAR), 2020, 23(1): 31-52.