|本期目录/Table of Contents|

[1]王俊炎,张 伟*.基于PLC的水下供电单元控制系统设计[J].武汉工程大学学报,2022,44(04):450-454.[doi:10.19843/j.cnki.CN42-1799/TQ.202206045]
 WANG Junyan,ZHANG Wei*.Design of Underwater Power Supply Unit Control System Based on Programmable Logic Controller[J].Journal of Wuhan Institute of Technology,2022,44(04):450-454.[doi:10.19843/j.cnki.CN42-1799/TQ.202206045]
点击复制

基于PLC的水下供电单元控制系统设计(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年04期
页码:
450-454
栏目:
机电与信息工程
出版日期:
2022-08-31

文章信息/Info

Title:
Design of Underwater Power Supply Unit Control System Based on Programmable Logic Controller
文章编号:
1674 - 2869(2022)04 - 0450 - 05
作者:
王俊炎1张 伟*2
1. 海军装备部武汉局驻武汉地区第三军事代表室,湖北 武汉 430205;
2. 武汉第二船舶设计研究所,湖北 武汉 430205
Author(s):
WANG Junyan1 ZHANG Wei*2
1. The Third Military Representative Office of Wuhan Bureau, Wuhan 430205, China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China;

关键词:
水下供电单元可编程逻辑控制器燃料电池PID控制
Keywords:
underwater power supply unit programmable logic controller fuel cell PID control
分类号:
TP273
DOI:
10.19843/j.cnki.CN42-1799/TQ.202206045
文献标志码:
A
摘要:
水下无人航行器为了实现长续航,需要安全可靠的水下供电单元作为备用电源。针对水下供电单元的安全性、可靠性的需求,首次将铝动力模块结合氢氧燃料电池作为水下备用电源,采用新一代可编程逻辑控制技术,开发了一套兼具智能化、网络化特点的水下供电单元控制系统。系统通过铝动力模块可以为氢-氧燃料电池供应所需氢气,氢-氧燃料电池可以为负载供应电能,并且通过浓度检测仪对空间内氢气浓度进行实时监测,采用PID控制器控制冷却水流速,将反应釜温度稳定在55 ℃到70 ℃之间,冷却水流速误差控制在0.3%以内。该控制系统实现了对水下供电单元的数据处理与故障检测,在系统运行状况下实时监测压力和流量的控制效果,可自动完成对水下设备供给电能。
Abstract:
To achieve long endurance, the underwater unmanned vehicle needs a safe and reliable underwater power supply unit as a backup power source. In response to the safety and reliability requirements of the underwater power supply unit, the aluminium power module is combined with a hydrogen-oxygen fuel cell as the underwater back-up power supply for the first time, and a new generation of programmable logic controller technology is used to develop an intelligent and networked underwater power supply unit control system. The system uses the aluminium power module to supply hydrogen to the hydrogen-oxygen fuel cell, and uses the hydrogen-oxygen fuel cell to supply electrical energy to the load. The concentration of hydrogen in the space is monitored in real time by a concentration detector, and the cooling water flow rate is controlled by a proportion integration differentiation controller to stabilize the reactor temperatures between 55 ℃ and 70 ℃, with the cooling water flow rate error within 0.3%. The control system realizes data processing and fault detection for the underwater power supply unit, monitors the control effect of pressure and flow rate in real time under the system operation condition, and can automatically complete the supply of electrical energy to the underwater equipment.

参考文献/References:

[1] 陈晓.美国海军研发无人潜航器水下无线充电技术[J].军民两用技术与产品,2017(21):30.

[2] 王雅琳,刘都群,杨依然.2019年水下无人系统发展综述[J].无人系统技术,2020,3(1):55-59.
[3] 宋之勇,牟健,郑维广,等.基于柴油发电机组的备用电源应用探讨[J].内燃机与配件,2021(23):99-100.
[4] 李锋.基于纯铅电池的风机发电机组备用电源系统[J].电气技术,2018,19(5):21-25.
[5] 程一步.氢燃料电池技术应用现状及发展趋势分析[J].石油石化绿色低碳,2018,3(2):5-13.
[6] 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(4):469-477.
[7] 赵永志,蒙波,陈霖新,等.氢能源的利用现状分析[J].化工进展,2015,34(9):3248-3255.
[8] 荆婷婷,康迪.基于PLC的燃料电池备用电源监控系统的研究[J].电源技术,2016,40(10):1959-1960.
[9] 刘国桢.燃料电池技术及在氯碱工业的应用[J].中国氯碱,2016(7):1-5,39.
[10] LEO T J,DURANGO J A. Navarro exergy analysis PEM faelcells for marine applications[J]. Energy,2010,35(2):1164-1171.
[11] VYSHNAVI V,DIVYA SREE V,PRAVEENA E. Fuel cell technology for distributed generation[J]. International Journal of Trend in Scientific Research and Development,2020,4(2):76-79.
[12] 于承雪,张心周,张科,等.小型氢燃料电池的应用现状及发展趋势[J].电池工业,2021,25(6):317-320.
[13] 刘凌夫.基于S7-1500 PLC的电石炉出炉机控制系统设计[J].电工技术,2022(8):14-16,19.
[14] 袁吉胜,谢昌成,彭龙龙.基于S7-1500PLC的干燥过滤装置系统[J].机电设备,2021,38(4):71-74.
[15] 韩猛,李家璇,陈立麒,等.一种氢燃料电池单片电压检测方法[J].电世界,2020,61(9):22-25.

相似文献/References:

[1]吴和保,柯 超,竺东杰,等.实时温度测控系统在材料浓缩提取技术上的应用[J].武汉工程大学学报,2014,(01):63.[doi:10. 3969/j. issn. 1674-2869. 2014. 01. 013]
 WU He-Bao,KE Chao,ZHU Dong-jie,et al.Temperature control system in material concentrated extroction technology of application[J].Journal of Wuhan Institute of Technology,2014,(04):63.[doi:10. 3969/j. issn. 1674-2869. 2014. 01. 013]
[2]吴和保,柯超,竺东杰.材料浓缩技术温度测控方法的研究[J].武汉工程大学学报,2014,(10):47.[doi:103969/jissn167428692014010010]
 WU He bao,KE Chao,ZHU Dong jie.Temperature control method based on material concentrated technology[J].Journal of Wuhan Institute of Technology,2014,(04):47.[doi:103969/jissn167428692014010010]
[3]陈国平,周聪,蔡勇,等.可编程控制器和触摸屏组合加热炉控制系统的设计[J].武汉工程大学学报,2014,(10):57.[doi:103969/jissn167428692014010012]
 CHEN Guo ping,ZHOU Cong,CAI Yong,et al.Design of heatingfurnace control system composed of programmable logic controller and touchscreen[J].Journal of Wuhan Institute of Technology,2014,(04):57.[doi:103969/jissn167428692014010012]
[4]谈宏华,杨 帆,胡学军.自动化生产线空调面板装配机械手的设计[J].武汉工程大学学报,2015,37(02):50.[doi:10. 3969/j. issn. 1674-2869. 2015. 02. 011]
 ,Design of pneumatic manipulator of assembly machine[J].Journal of Wuhan Institute of Technology,2015,37(04):50.[doi:10. 3969/j. issn. 1674-2869. 2015. 02. 011]

备注/Memo

备注/Memo:
收稿日期:2022-06-30
作者简介:王俊炎,硕士,工程师。E-mail:[email protected]
通讯作者:张 伟,博士,高级工程师。E-mail:[email protected]
引文格式:王俊炎,张伟. 基于PLC的水下供电单元控制系统设计[J]. 武汉工程大学学报,2022,44(4):450-454.

更新日期/Last Update: 2022-08-25