[2] LAMERS M M, HAAGMANS B L. SARS-CoV-2 pathogenesis[J]. Nature Reviews Microbiology, 2022, 20(5): 270-284.
[3] WORLD HEALTH ORGANIZATION. Coronavirus (COVID-19) dashboard[EB/OL].(2022-06-15)[2022-06-20]. https://covid19.who.int/.
[4] CREECH C B, WALKER S C, SAMUELS R J. SARS-CoV-2 vaccines[J]. JAMA-Journal of the American Medical Association,2021,325(13): 1318- 1320.
[5] MCKEE D L, STERNBERG A, STANGE U, et al. Candidate drugs against SARS-CoV-2 and COVID-19[J]. Pharmacological Research, 2020, 157: 104859:1-9.
[6] 杨璐, 王辉强, 李玉环. COVID-19治疗药物的研究进展[J]. 药学学报, 2020, 55(6): 1081-1090.
[7] 刘玉,明巍,李陈宗,等. 拟肽类冠状病毒主蛋白酶抑制剂的研究进展[J]. 药学学报, 2022,57(7):1977- 1990.
[8] WARREN T K, JORDAN R, LO M K, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys[J]. Nature, 2016, 531(7594): 381-385.
[9] SHEAHAN T P, SIMS A C, GRAHAM R L, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses[J]. Science Translational Medicine, 2017, 9(396): eaal3653:1-11.
[10] EASTMAN R T, ROTH J S, BRIMACOMBE K R, et al. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19[J]. ACS Central Science, 2020, 6(5): 672-683.
[11] 张儒, 孙子茹, 刘胜男, 等. 新型冠状病毒治疗药物的研究现状及展望[J]. 科学通报, 2022, 67(10): 933-947.
[12] 张宇鑫. 瑞德西韦 (Remdesivir, Veklury) [J]. 中国药物化学杂志, 2021, 31(10): 859.
[13] HOLSHUE M L, DEBOLT C, LINDQUIST S, et al. First case of 2019 novel coronavirus in the United States[J]. New England Journal of Medicine, 2020, 382(10): 929-936.
[14] SPINNER C D, GOTTLIEB R L, CRINER G J, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial[J]. Journal of the American Medical Association,2020,324(11): 1048-1057.
[15] ARBA M, WAHYUDI S T, BRUNT D J, et al. Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-CoV-2[J]. Computers in Biology and Medicine, 2021, 129: 104156:1-11.
[16] KOKIC G, HILLEN H S, TEGUNOV D, et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir[J]. Nature Communications, 2021, 12: 279:1-7.
[17] YIN W C, MAO C Y, LUAN X D, et al. Structural basis for the inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir[J]. Science, 2020, 368(6498): 1499-1504.
[18] LAMB Y N. Remdesivir: first approval[J]. Drugs, 2020, 80(13): 1355-1363.
[19] U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA approves first COVID-19 treatment for young children[EB/OL].(2022-04-25)[2022-06-20]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-
approves-first-covid-19-treatment-young-children.
[20] GARIBALDI B T, WANG K, ROBINSON M L, et al. Comparison of time to clinical improvement with vs without remdesivir treatment in hospitalized patients with COVID-19[J]. Journal of the American Medical Association, 2021, 4(3): e213071:1-14.
[21] 吉利德科学公司. 吉利德科学2021年第四季度及全年财务报告摘要[EB/OL].(2022-02-02)[2022-06-20]. https://www.gileadchina.cn/-/media/gilead-china/pdfs/news-and-press/press-releases/gildq4fy21earning spressreleasecn.
[22] 吉利德科学公司. 吉利德科学发布2022年第一季度财务报告[EB/OL].(2022-04-29)[2022-06-20]. https://www.gileadchina.cn/-/media/gilead-china/pdfs/news-and-press/press-releases/20220429-02.
[23] SHEAHAN T P, SIMS A C, ZHOU S T, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice[J]. Science Translational Medicine, 2020, 12(541): eabb5883:1-20.
[24] WAHL A, GRALINSKI L E, JOHNSON C E, et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801[J]. Nature, 2021, 591(7850): 451-457.
[25] COX R M, WOLF J D, PLEMPER R K. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets[J]. Nature Microbiology, 2021, 6(1): 11-18.
[26] TOOTS M, YOON J J, HART M, et al. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model[J]. Translational Research, 2020, 218: 16-28.
[27] AGOSTINI M L, PRUIJSSERS A J, CHAPPELL J D, et al. Small-molecule antiviral beta-D-N4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance[J]. Journal of Virology, 2019, 93(24): e01348-19:1-14.
[28] KABINGER F, STILLER C, SCHMITZOVA J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis[J]. Nature Structural & Molecular Biology, 2021, 28(9): 740-746.
[29] URAKOVA N, KUZNETSOVA V, CROSSMAN D K, et al. Beta-d-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome[J]. Journal of Virology, 2018, 92(3): e01965-17:1-22.
[30] 孟晗, 于芳, 何宇鹏, 等. 新型口服广谱抗病毒药物—EIDD-2801[J]. 临床药物治疗杂志, 2020, 18(7): 12-15.
[31] U.S. FOOD AND DRUG ADMINISTRATION. EUA 108 Merck Molnupiravir 03232022[EB/OL].(2022-03-23)[2022-06-20]. https://www.fda.gov/media/155053/download.
[32] 默沙东公司. 默沙东公布2021年第四季度和年度财务业绩[EB/OL].(2022-02-03)[2022-06-20]. https://www.msdchina.com.cn/media/newsroom/company_news_2022-02-03.html.
[33] OWEN D R, ALLERTON C M N, ANDERSON A S, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19[J]. Science, 2021, 374(6575): 1586-1593.
[34] 王欢, 张铖. 口服新型冠状病毒肺炎治疗新药—Paxlovid[J]. 临床药物治疗杂志, 2022, 20(2): 13-17.
[35] PFIZER. Pfizer reports first-quarter 2022 results[EB/OL].(2022-05-03)[2022-06-20]. https://s28.q4cdn.com/781576035/files/doc_financials/2022/q1/Q1-2022- PFE-Earnings-Release.
[36] XIE Y C, YIN W C, ZHANG Y M, et al. Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2[J]. Cell Research, 2021, 31(11): 1212-1214.
[37] WEI D B, HU T W, ZHANG Y M, et al. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2[J]. Bioorganic & Medicinal Chemistry, 2021, 46: 116364:1-12.
[38] SHEN Y Z, AI J W, LIN N, et al. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 omicron variants[J]. Emerging Microbes & Infections, 2022, 11(1): 1518-1523.
[39] MAHASE E. COVID-19: anti-inflammatory treatment baricitinib reduces deaths in patients admitted to hospital, finds trial[J]. BMJ-British Medical Journal, 2022, 376: o573:1.
[40] ZHANG X H, ZHANG Y, QIAO W Z, et al. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19[J]. International Immunopharmacology,2020,86: 106749.
[41] KIM J S, LEE J Y, YANG J W, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19[J]. Theranostics,2021,11(1): 316-329.
[42] U. S. FOOD AND DRUG ADMINISTRATION. Baricitinib EUA fact sheet for HCP[EB/OL].(2022-05)[2022-06-20]. https://www.fda.gov/media/143823/download.
[43] INCYTE. FDA approves Lilly and Incyte’s OLUMIANT? (baricitinib) for the Ttreatment of certain hospitalized patients with COVID-19[EB/OL].(2022-05-11)[2022-06-20]. https://www.prnewswire.com/news - releases / fda-approves - lilly - and - incytes-olumiant - baricitinibfor - the - treatment - of - certain -hospitalized-patients-with-covid-19-301544527.html.
[44] FAYZULLINA D, KHARWAR R K, ACHARYA A, et al. FNC: an advanced anticancer therapeutic or just an underdog[J]. Frontiers in Oncology, 2022, 12: 820647:1-8.
[45] YU B, CHANG J B. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment[J]. Signal Transduction and Targeted Therapy,2020,5:236:1-2.
[46] ZHANG J L, LI Y H, WANG L L, et al. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients[J]. Signal Transduction and Targeted Therapy, 2021, 6: 414:1-15.
[47] 顾觉奋. 新型冠状病毒肺炎临床治疗药物最新研究进展[J]. 中国新药杂志, 2021, 30(2): 154-161.
[48] 马密霞, 秦宁, 闵清, 等. 抗新型冠状病毒肺炎药物研究进展[J]. 武汉工程大学学报, 2020, 42(3): 237-245.
[49] 黄璐, 古双喜. 用于COVID-19潜在治疗的小分子药物及专利研究[J]. 中国医药工业杂志, 2020, 51(4): 467-475.
[50] 宋乐天, 程玉森, 高升华, 等. 人冠状病毒广谱抑制剂的研究进展[J]. 中国药物化学杂志, 2021, 31(9): 721-738.
[51] 熊阿珍, 孟光兴. 药物重定位候选药物筛选路径[J]. 中国医药工业杂志, 2020, 51(2): 170-175.
[52] PUSHPAKOM S, IORIO F, EYERS P A, et al. Drug repurposing: progress, challenges and recommendations[J]. Nature Reviews Drug Discovery, 2019, 18(1): 41-58.
[53] 古双喜, 石正丽, 明巍, 等. 吲哚哌啶嘧啶类衍生物在制备新型冠状病毒抑制剂中的应用: 114588158A[P]. 2022-06-07.
[54] WHO SOLIDARITY TRIAL CONSORTIUM. Repur-posed antiviral drugs for covid-19 - interim who solidarity trial results[J]. New England Journal of Medicine, 2021, 384(6): 497-511.
[55] MA Y, FRUTOS-BELTRAN E, KANG D W, et al. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses[J]. Chemical Society Reviews,2021,50(7): 4514-4540.
[56] GAO S H, HUANG T G, SONG L T, et al. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors[J]. Acta Pharmaceutica Sinica B, 2022, 12(2): 581-599.
[57] XIONG M Y, NIE T Q, SHAO Q, et al. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease[J]. European Journal of Medicinal Chemistry, 2022, 231: 114130:1-8.
[58] 刘玎, 朱园园, 古双喜, 等. 流动化学在卤化反应中的应用[J]. 有机化学, 2021, 41(3): 1002-1011.
[59] ATOBE M, TATENO H, MATSUMURA Y. Applica-tions of flow microreactors in electrosynthetic processes[J]. Chemical Reviews, 2018, 118(9): 4541-4572.
[60] 苏为科, 余志群. 连续流反应技术开发及其在制药危险工艺中的应用[J]. 中国医药工业杂志, 2017, 48(4): 469-482.
[61] TANG P, NIE B, HUANG J Z, et al. Recent advances of pharmaceutical process chemistry and its innovation in China: Part 1[J]. Pharmaceutical Fronts, 2020, 2(1): e28-e54.
[62] 柯彩霞, 徐德蛟, 闫云君, 等. 生物酶法拆分手性药物的研究进展[J].武汉工程大学学报,2016,38(6): 517-520.
[63] EGOROV I N, SANTRA S, KOPCHUK D S, et al. Ball milling: an efficient and green approach for asymmetric organic syntheses[J]. Green Chemistry, 2020, 22(2): 302-315.
[64] KWON K, SIMONS R T, NANDAKUMAR M, et al. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis[J]. Chemical Reviews, 2022, 122(2): 2353-2428.