|本期目录/Table of Contents|

[1]孙振威,罗 娜,庹文君,等.脒类化合物在构筑含氮杂环骨架中的应用进展[J].武汉工程大学学报,2022,44(05):490-503.[doi:10.19843/j.cnki.CN42-1779/TQ.202203046]
 SUN Zhenwei,LUO Na,TUO Wenjun,et al.Application Progress of Amidine Compounds in Construction of Nitrogen-Containing Heterocyclic Skeletons[J].Journal of Wuhan Institute of Technology,2022,44(05):490-503.[doi:10.19843/j.cnki.CN42-1779/TQ.202203046]
点击复制

脒类化合物在构筑含氮杂环骨架中的应用进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年05期
页码:
490-503
栏目:
50周年校庆特刊
出版日期:
2022-10-31

文章信息/Info

Title:
Application Progress of Amidine Compounds in Construction of Nitrogen-Containing Heterocyclic Skeletons
文章编号:
1674 - 2869(2022)05 - 0490 - 14
作者:
孙振威1 罗 娜1庹文君1 张 翔1贾丰成*1 2
1. 武汉工程大学化学与环境工程学院,湖北 武汉 430205;
2. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205

Author(s):
SUN Zhenwei1 LUO Na1TUO Wenjun1ZHANG Xiang1 JIA Fengcheng*12

1. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education,Wuhan 430205, China

关键词:
脒类含氮杂环串联环化反应机理
Keywords:
amidines nitrogen-containing heterocycles tandem cyclization reaction mechanism
分类号:
0622.6
DOI:
10.19843/j.cnki.CN42-1779/TQ.202203046
文献标志码:
A
摘要:
脒类化合物是一种重要的有机合成砌块,由于其具有反应活性高且廉价易得,利用脒作为起始原料来构建各类骨架新颖的含氮杂环受到了有机化学家的持续关注,多种类型的杂环化合物(如嘧啶,喹啉,喹唑啉和三嗪等)的合成都得以有效实现,这也极大地丰富了过渡金属催化以及串联环化反应研究。聚焦于脒类这一多功能化合物在氮杂环合成中的应用,主要从无过渡金属体系下的串联环化反应以及自由基型环化反应两个角度来展开综述,并着重对相应的反应策略和机理进行了详细阐述,同时进一步从绿色合成化学发展角度指出光电媒介下脒盐相关的自由基反应具有广阔的发展前景。
Abstract:
Amidines are an essential building block in organic synthesis. Due to their high reactivity, low-price and easy preparation, using amidines as starting materials for the construction of various novel nitrogen-containing heterocyclic compounds has attracted sustained attention from organic chemists. Thus the synthesis of various heterocyclic compounds (pyrimidine, quinoline, quinazoline and triazine,etc) has been effectively realized, which has greatly enriched the research field of transition metal catalysis and tandem cyclization. This review focuses on the tandem cyclization reactions related to amidine compounds, mainly including transition metal-free systems and free radical-based cyclization reactions with particular emphasis on reaction strategies and mechanisms. At the same time, from the perspective of the development of green synthetic chemistry, it is pointed out that the radical reactions involving amidine salts driven by visible light or electricity have broad development prospects.

参考文献/References:

[1] XIE Y J, CHENG X F,DENG G J, et al. Efficient 4,5-dihydro-1H-imidazol-5-one formation from amidines and ketones under transition-metal free conditions[J]. Green Chemistry, 2015,17(1): 209-213.

[2] GUO W, ZHAO M M, FAN X L, et al. Developments towards synthesis of N-heterocycles from amidines via C-N/C-C bond formation[J]. Organic Chemistry Frontiers, 2019, 6(13): 2120-2141.
[3] WANG M, LIU X W, GAO C. Bicyclization of 4-cyano-1,2-diketones with amidines: synthesis of tetrahydroimidazo[4,5-b]-5-pyridinones[J].The Journal of Organic Chemistry,2022,87(16):11274-11280.
[4] GUO W, FAN X L, ZHAO M M, et al. Base-promoted metal-/oxidant-free three-component tandem annulation: a strategy for the construction of 2,4,5-trisubstituted thiazoles via C-N bond cleavage of amidines[J].Asian Journal of Organic Chemistry, 2018, 7(9):1893-1897.
[5] ZHENG L Y, GUO W, FAN X L, et al. Metal-free, TBHP-mediated, [3+2+1]-type intermolecular cycloaddition reaction: synthesis of pyrimidines from amidines, ketones, and DMF through C(sp3)-H activation[J]. Asian Journal of Organic Chemistry, 2017, 6(7): 837-840.
[6] POLY S S, HASHIGUCHI Y, FUJITANI T, et al.Direct synthesis of triazines from alcohols and amidines using supported Pt nanoparticle catalysts via the acceptorlessdehydrogenativemethodology[J]. Catalysis Science & Technology,2022,12(15): 4679-4687.
[7] VADAGAONKAR K S, KALMODE H P,CHASKAR A C, et al. Greener [3+3] tandem annulation-oxidation approach towards the synthesis of substituted pyrimidines[J]. New Journal of Chemistry, 2015, 39(5): 3639-3645.
[8] DE R, SENGUPTA U, BERA M K, et al.A practical and cost-effective approach to polysubstituted pyrimidine derivatives via DBU mediated redox isomerization of propargyl alcohol and subsequent N-C-N fragment condensation[J]. New Journal of Chemistry, 2022, 46(22): 10603-10610.
[9] QIN Z M, MA Y M, LI F Z. Construction of a Pyrimidine Framework through [3 + 2 + 1] annulation of amidines, ketones, and N,N-Dimethyl-aminoethanol as One Carbon Donor[J]. The Journal of Organic Chemistry, 2021, 86(19): 13734-13743.
[10] JIA F C, ZHOU Z W, WUA X, et al.Divergent synthesis of quinazolin-4(3H)-ones and tryptanthrins enabled by a tert-butyl hydroperoxide/K3PO4-promoted oxidative cyclization of isatins at room temperature[J].Organic Letters, 2016, 18(12): 2942-2945.
[11] DUBEY AV ,KUMAR A V. Cu(II)-glucose:sustainable catalyst for the synthesis of quinazolinones in a biomass-derived solvent 2-methylTHF and application for the synthesis of diproqualone[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14283-14291.
[12] XU C, JIAF C, WU A X,et al. Dimethyl sulfoxide serves as a dual synthon: construction of 5-methyl pyrimidine derivatives via four component oxidative annulation[J].Advanced Synthesis & Catalysis,2018, 360(12): 2267-2271.
[13] ZHU C L, LIU C, JIANG H F, et al.Transition-metal free selective C(α)-C(β) bond cleavage of trifluoromethyl ketones with amidines under air: facile access to 5-trifluoromethylated Imidazol-4-ones[J]. Organic Chemistry Frontiers,2019, 6(6): 858-862.
[14] LI W H, GAO W C, LI X, et al.Access to highly functionalized imidazolones bearing α-amino acid esters via KOH-promoted annulation of amidines, nitrosoarenes and malonicesters[J]. Organic & Biomolecular Chemistry,2021,19(29):6473-6477.
[15] XIE F, LI Y B, ZHANG M, et al.OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones[J]. Journal of Catalysis,2021, 398: 192-197.
[16] WANG S, LUO N L, WANGCD, et al. DBU-mediated cyclization of acylcyclopropanecarboxylates with amidines: access to polysubstituted pyrimidines[J]. Organic Letters,2019, 21(12): 4544-4548.
[17] YU X X, ZHOU Y, SONG Q L, et al.Transition metal-free assembly of 1,3,5-triazines using ethyl bromodifluoroacetate as C1 source[J].Chemical Communications,2019, 55(56): 8079-8082.
[18] WANG A A, LIU X S, JIANGTS, et al. Substrate-induced DMSO activation and subsequent reaction for rapid construction of substituted pyrimidines[J].Organic Chemistry Frontiers, 2021, 8(5): 947-952.
[19] GAO Q H, WU M M, XUY T, et al. I2-catalyzed aerobic α,β-dehydrogenation and deamination of tertiary alkylamines: highly selective synthesis of polysubstituted pyrimidines via hidden acyclic enamines[J].Organic Letters, 2020, 22(14): 5645-5649.
[20] SUN L W, SHEN Z L, CHU X Q, et al. Transition-metal-free hydroamination/defluorination/cyclization of perfluoroalkyl alkynes with amidines[J].Organic Chemistry Frontiers,2022, 9(1): 109-116.
[21] CHEN Y L, SHEN Z L, CHU X Q, et al. Four-component defluorinative reaction of allylic fluorides, amidines, and Cs2CO3 under transition-metal-free conditions[J]. Green Chemistry,2022,24(18):6816-6822.
[22] GUO W, HUANGK B, JIANG H F, et al. A facile approach to synthesize 3,5-disubstituted-1,2,4-oxadiazoles via copper-catalyzed-cascade annulation of amidines and methylarenes[J].Chemical Communications,2015, 51(42): 8857-8860.
[23] XIE H, HUANG H W, DENG G J, et al. A three-component approach to 3,5-diaryl-1,2,4-thiadiazoles under transition-metal-free conditions[J].Organic Letters,2016, 18(9): 2196-2199.
[24] YU W T, WU W Q, JIANG H F, et al. Copper-catalyzed aerobic oxidative [3+2] annulation for the synthesis of 5-amino/imino-substituted 1,2,4-thiadiazoles through C-N/N-S bond formation[J].The Journal of Organic Chemistry,2018, 83(16): 9334-9343.
[25] ZHANG J, ZHENG T T, ZHANG J D. I2/K2S2O8 mediated direct oxidative annulation of alkylazaarenes with amidines for the synthesis of substituted 1,3,5-triazines[J].European Journal of Organic Chemistry,2020, 2020(7): 860-865.
[26] ZHANG Y R, GU R, HAN S Q, et al. An alternatively metal-free synthesis of 1,3,5-triazines or 1,2,4-thiadiazoles from benzyl chlorides and benzylamines mediated by elemental sulfur[J]. Tetrahedron Letters,2019, 60(49): 151289.
[27] GUO W, WU W Q, JIANG H F, et al. Transition metal free intermolecular direct oxidative C-N bond formation to polysubstitutedpyrimidines using molecular oxygen as the sole oxidant[J].The Journal of Organic Chemistry,2016, 81(13): 5538-5546.
[28] LIU D Q, GUO W, JIANG H F, et al.Base-mediated three-component tandem reactions for the synthesis of multisubstituted pyrimidines[J].The Journal of Organic Chemistry,2017, 82(24): 13609-13616.
[29] ZHAN J L, CHEN F, HAN B, et al. Cu-Catalyzed [3 + 3] annulation for the synthesis of pyrimidines via β-C(sp3)-H functionalization of saturated ketones[J].The Journal of Organic Chemistry,2016, 81(23): 11994-12000.
[30] ZHANG M M, ZHAN Z Z, HUANG G S, et al. Direct synthesis of 2,4,6-trisubstituted pyrimidines via base-mediated one-pot multicomponent reaction[J]. ChemistrySelect,2021, 6(47): 13627-13632.
[31] CAO W B, XU X P, JIS J, et al. Copper-catalyzed construction of eight-membered rings via oxidative ring expansion and intermolecular cyclization sequencing of indoles with amidines: efficient synthesis of benzo[1,3,5]triazocin-6(5H)-ones[J]. Chemical Communications,2017,53(49):6601-6604.
[32] ZHANG L L, XU X P, JI S J, et al. Visible-light-induced oxidative ring expansion of indoles with amidines[J].Organic Chemistry Frontiers,2019, 6(11): 1787-1795.
[33] GUO W, WU W Q, JIANG H F, et al. Cu-catalyzed intermolecular [3+3] annulation involving oxidative activation of an unreactive C(sp3)-H bond: access to pyrimidine derivatives from amidines and ketones[J]. Organic Chemistry Frontiers,2017,4(6):1107-1111.
[34] TANG L, WANG Z H, ZHANG W, et al. Flower-like Au@CeO2 core-shell nanospheres as efficient photocatalyst for multicomponent reaction of alcohols and amidines[J/OL].Asian Journal of Organic Chemistry,2022, 11(7) [2022-08-31].https://onlinelibrary.wiley.com/doi/10.1002/ajoc. 202200147. DOI: 10.1002/ajoc.202200147.
[35] CHAKRABORTY G, MANDAL S, PAUL N D, et al.Nickel-catalyzed synthesis of pyrimidines via dehydrogenative functionalization of alcohols[J]. Asian Journal of Organic Chemistry,2020,9(3): 431-436.
[36] LIANG F S, BI X H,NISHIDE H,et al. Ambient- light-promoted three-component annulation: synthesis of perfluoroalkylated pyrimidines[J]. Organic Letters,2017, 19(9): 2358-2361.
[37] SCHMITT E, COMMARE B, PANOSSIAN A, et al.Synthesis of mono- and bis(fluoroalkyl)pyrimidines from FARs, fluorinated acetoacetates, and malononitrile provides easy access to novel high-value pyrimidine scaffolds[J]. Chemistry-A European Journal,2017, 24(6): 1311-1316.
[38] CHU X Q, SHEN Z L, LOH T P, et al. Copper- catalyzed three-component cyclization of amidines, styrenes, and fluoroalkyl halides for the synthesis of modular fluoroalkylatedpyrimidines[J].Chemical Communications,2018, 54(21): 2615-2618.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-03-29
基金项目:国家自然科学基金(21901193)
作者简介:孙振威,硕士研究生。E-mail:[email protected]
*通讯作者:贾丰成,博士,讲师。E-mail:[email protected]
引文格式:孙振威,罗娜, 庹文君,等. 脒类化合物在构筑含氮杂环骨架中的应用进展[J]. 武汉工程大学学报,2022,44(5):490-503.

更新日期/Last Update: 2022-11-01