[2] LUU T G, JUNG Y, KIM H K. Visible-light-induced catalytic selective halogenation with photocatalyst[J]. Molecules, 2021, 26 (23):7380.
[3] YANG M Q, GAO M M, HONG M H, et al. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production[J]. Advanced Materials, 2018, 30 (47):1802894.
[4] DONG G P, ZHANG Y H, PAN Q W, et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2014, 20:33-50.
[5] DONG X P, CHENG F X. Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications[J]. Journal of Materials Chemistry A, 2015, 3 (47):23642-23652.
[6] REDDY K R, REDDY C V, NADAGOUDA M N, et al. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications[J]. Journal of Environmental Management, 2019, 238:25-40.
[7] WANG X C, MAEDA K, CHEN X F, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society, 2009, 131 (5):1680-1681.
[8] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 (1):76-80.
[9] NASERI A, SAMADI M, POURJAVADI A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions[J]. Journal of Materials Chemistry A, 2017, 5 (45):23406-23433.
[10] ZHU Q H, XU Z H, QIU B C, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021, 17 (40):2101070.
[11] LIAO G F, GONG Y, ZHANG L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail" for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12 (7):2080-2147.
[12] LIN L H, YU Z Y, WANG X C. Crystalline carbon nitride semiconductors for photocatalytic water splitting[J]. Angewandte Chemie (International Edition), 2019, 58 (19):6164-6175.
[13] TEIXEIRA I F, BARBOSA E C M, TSANG S C E, et al. Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis[J]. Chemical Society Reviews, 2018, 47 (20):7783-7817.
[14] HUANG M T, CHEN C, WANG T, et al. Cadmium-sulfide/gold/graphitic-carbon-nitride sandwich heterojunction photocatalyst with regulated electron transfer for boosting carbon-dioxide reduction to hydrocarbon[J]. Journal of Colloid and Interface Science, 2022, 613:575-586.
[15] RAMAKRISHNAN S B, MOHAMMADPARAST F, DADGAR A P, et al. Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis[J]. Advanced Optical Materials, 2021, 9 (22):2101128.
[16] CHENG W R, SU H, TANG F M, et al. Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanoparticle/C3N4 for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5 (37):19649-19655.
[17] TIAN H Y, LIU X, LIANG Z Q, et al. Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible and near-infrared light[J]. Journal of Colloid and Interface Science, 2019, 557:700-708.
[18] LIU Y D, NASERI A, LI T, et al. Shape-controlled photochemical synthesis of noble metal nanocrystals based on reduced graphene oxide[J]. ACS Applied Materials & Interfaces, 2022, 14 (14):16527-16537.
[19] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10 (12):911-921.
[20] ZHANG P, WANG T, GONG J L. Mechanistic understanding of the plasmonic enhancement for solar water splitting[J]. Advanced Materials, 2015, 27 (36):5328-5342.
[21] LI S W, MIAO P, ZHANG Y Y, et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis[J]. Advanced Materials, 2020, 33 (6):2000086.
[22] SAMANTA S, MARTHA S, PARIDA K. Facile synthesis of Au/g-C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation[J]. ChemCatChem, 2014, 6 (5):1453-1462.
[23] MO Z, XU H, CHEN Z G, et al. Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion[J]. Chinese Journal of Catalysis, 2018, 39 (4):760-770.
[24] JIMENEZ-CALVO P, MARCHAL C, COTTINEAU T, et al. Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites[J]. Journal of Materials Chemistry A, 2019, 7 (24):14849-14863.
[25] KAMAT P V, JIN S. Semiconductor photocatalysis: “Tell us the complete story!”[J]. ACS Energy Letters, 2018, 3 (3):622-623.
[26] CHANG Y, LIU Z, SHEN X, et al. Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water[J]. Journal of Hazardous Materials, 2018, 344:1188-1197.