|本期目录/Table of Contents|

[1]宁 靖,李广芳,陈 嵘,等.Au/g-C3N4纳米复合材料可见光催化产氢[J].武汉工程大学学报,2022,44(05):509-515.[doi:10.19843/j.cnki.CN42-1779/TQ.202204018]
 NING Jing,LI Guangfang,CHEN Rong,et al.Photocatalytic Hydrogen Production via Au/g-C3N4 Nanocomposites Under Visible Light[J].Journal of Wuhan Institute of Technology,2022,44(05):509-515.[doi:10.19843/j.cnki.CN42-1779/TQ.202204018]
点击复制

Au/g-C3N4纳米复合材料可见光催化产氢(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年05期
页码:
509-515
栏目:
50周年校庆特刊
出版日期:
2022-10-31

文章信息/Info

Title:
Photocatalytic Hydrogen Production via Au/g-C3N4 Nanocomposites Under Visible Light
文章编号:
1674 - 2869(2022)05 - 0509 - 07
作者:
宁 靖1李广芳2陈 嵘1赵慧平*1
1. 武汉工程大学化学与环境工程学院,绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205;
2. 华中科技大学化学与化工学院,湖北 武汉 430074;

Author(s):
NING Jing1 LI Guangfang2 CHEN Rong1 ZHAO Huiping*1
1. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology;Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education,Wuhan 430205, China;
2. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;

关键词:
等离激元纳米金石墨相氮化碳光催化产氢纳米复合材料
Keywords:
plasmonic Au nanospheres g-C3N4 photocatalytic hydrogen production nanocomposites
分类号:
TQ116
DOI:
10.19843/j.cnki.CN42-1779/TQ.202204018
文献标志码:
A
摘要:
采用种子介导法制备得到具有表面等离激元特性的Au纳米球(Au NPs),再通过简单旋蒸方法将其负载于氮化碳(g-C3N4)纳米片层材料,制得一系列不同Au NPs负载量的Au/g-C3N4复合材料。得到的复合材料能够有效利用Au NPs的表面等离激元特性,并拓宽g-C3N4在可见光区的光响应能力。将制得的复合材料用于可见光下光催化产氢,测试结果表明,相较于单纯g-C3N4纳米材料,Au/g-C3N4复合材料的光催化产氢活性得到了明显提升,其中,Au NPs负载质量分数为2.5%的Au/g-C3N4样品在催化剂用量为10 mg、且以体积分数20%的三乙醇胺为牺牲剂时光催化产氢活性最优。光电性能测试结果表明Au NPs的引入能够有效促进光生载流子的产生和迁移、抑制电子-空穴对的复合,进而有效提升复合材料的光催化性能。
Abstract:
Plasmonic Au nanospheres (Au NPs) were prepared by seed-mediated method. To fabricate a series of Au/g-C3N4 composite materials with different Au NPs loading, Au NPs were supported on g-C3N4 nanosheets by means of rotary steaming. The composite material can effectively take advantage of the surface plasmon properties of Au NPs and broaden the light response capability of g-C3N4 in the visible light region. The photocatalytic properties of the above nanocomposites were tested by photocatalytic hydrogen production under visible light. Compared with the pure g-C3N4 nanomaterials, loading with Au NPs can obviously improve the performance of visible light photocatalytic hydrogen production of nanocomposite materials. Au/g-C3N4 with 2.5% (mass fraction) Au NPs exhibits the best photocatalytic hydrogen production activity using 10 mg catalyst and volume fraction 20% of triethanolamine as the sacrificial agent. The photoelectric performance test results show that the introduction of Au NPs can distinctly enhance the generation and migration of photocarriers and inhibit the recombination of electron-hole pairs, thus significantly promoting the photocatalytic performance of the materials.

参考文献/References:

[1] GANGULY P, HARB M, CAO Z, et al. 2D nanomaterials for photocatalytic hydrogen production[J]. ACS Energy Letters, 2019, 4 (7):1687-1709.

[2] LUU T G, JUNG Y, KIM H K. Visible-light-induced catalytic selective halogenation with photocatalyst[J]. Molecules, 2021, 26 (23):7380.
[3] YANG M Q, GAO M M, HONG M H, et al. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production[J]. Advanced Materials, 2018, 30 (47):1802894.
[4] DONG G P, ZHANG Y H, PAN Q W, et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2014, 20:33-50.
[5] DONG X P, CHENG F X. Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications[J]. Journal of Materials Chemistry A, 2015, 3 (47):23642-23652.
[6] REDDY K R, REDDY C V, NADAGOUDA M N, et al. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications[J]. Journal of Environmental Management, 2019, 238:25-40.
[7] WANG X C, MAEDA K, CHEN X F, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society, 2009, 131 (5):1680-1681.
[8] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 (1):76-80.
[9] NASERI A, SAMADI M, POURJAVADI A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions[J]. Journal of Materials Chemistry A, 2017, 5 (45):23406-23433.
[10] ZHU Q H, XU Z H, QIU B C, et al. Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution[J]. Small, 2021, 17 (40):2101070.
[11] LIAO G F, GONG Y, ZHANG L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail" for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12 (7):2080-2147.
[12] LIN L H, YU Z Y, WANG X C. Crystalline carbon nitride semiconductors for photocatalytic water splitting[J]. Angewandte Chemie (International Edition), 2019, 58 (19):6164-6175.
[13] TEIXEIRA I F, BARBOSA E C M, TSANG S C E, et al. Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis[J]. Chemical Society Reviews, 2018, 47 (20):7783-7817.
[14] HUANG M T, CHEN C, WANG T, et al. Cadmium-sulfide/gold/graphitic-carbon-nitride sandwich heterojunction photocatalyst with regulated electron transfer for boosting carbon-dioxide reduction to hydrocarbon[J]. Journal of Colloid and Interface Science, 2022, 613:575-586.
[15] RAMAKRISHNAN S B, MOHAMMADPARAST F, DADGAR A P, et al. Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis[J]. Advanced Optical Materials, 2021, 9 (22):2101128.
[16] CHENG W R, SU H, TANG F M, et al. Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanoparticle/C3N4 for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5 (37):19649-19655.
[17] TIAN H Y, LIU X, LIANG Z Q, et al. Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible and near-infrared light[J]. Journal of Colloid and Interface Science, 2019, 557:700-708.
[18] LIU Y D, NASERI A, LI T, et al. Shape-controlled photochemical synthesis of noble metal nanocrystals based on reduced graphene oxide[J]. ACS Applied Materials & Interfaces, 2022, 14 (14):16527-16537.
[19] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10 (12):911-921.
[20] ZHANG P, WANG T, GONG J L. Mechanistic understanding of the plasmonic enhancement for solar water splitting[J]. Advanced Materials, 2015, 27 (36):5328-5342.
[21] LI S W, MIAO P, ZHANG Y Y, et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis[J]. Advanced Materials, 2020, 33 (6):2000086.
[22] SAMANTA S, MARTHA S, PARIDA K. Facile synthesis of Au/g-C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation[J]. ChemCatChem, 2014, 6 (5):1453-1462.
[23] MO Z, XU H, CHEN Z G, et al. Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion[J]. Chinese Journal of Catalysis, 2018, 39 (4):760-770.
[24] JIMENEZ-CALVO P, MARCHAL C, COTTINEAU T, et al. Influence of the gas atmosphere during the synthesis of g-C3N4 for enhanced photocatalytic H2 production from water on Au/g-C3N4 composites[J]. Journal of Materials Chemistry A, 2019, 7 (24):14849-14863.
[25] KAMAT P V, JIN S. Semiconductor photocatalysis: “Tell us the complete story!”[J]. ACS Energy Letters, 2018, 3 (3):622-623.
[26] CHANG Y, LIU Z, SHEN X, et al. Synthesis of Au nanoparticle-decorated carbon nitride nanorods with plasmon-enhanced photoabsorption and photocatalytic activity for removing various pollutants from water[J]. Journal of Hazardous Materials, 2018, 344:1188-1197.

相似文献/References:

[1]丁晓波,覃远航*.N、S共掺杂碳基高效氧还原催化剂的制备[J].武汉工程大学学报,2021,43(04):362.[doi:10.19843/j.cnki.CN42-1779/TQ.202105007]
 DING Xiaobo,QIN Yuanhang*.Preparation of N, S Co-doped Carbon as Highly Efficient Catalyst for Oxygen Reduction[J].Journal of Wuhan Institute of Technology,2021,43(05):362.[doi:10.19843/j.cnki.CN42-1779/TQ.202105007]

备注/Memo

备注/Memo:
收稿日期:2022-04-20
基金项目:国家自然科学基金(21601141)
作者简介:宁 靖,硕士研究生。E-mail:[email protected]
*通讯作者:赵慧平,博士,副教授。E-mail:[email protected]
引文格式:宁靖,李广芳,陈嵘,等. Au@g-C3N4纳米复合材料光催化产氢[J]. 武汉工程大学学报,2022,44(5):509-515.

更新日期/Last Update: 2022-11-01