[2] BRUNSVELD L, FOLMER B J B, MEIJER E W, et al. Supramolecular polymers [J]. Chemical Reviews, 2001, 101 (12): 4071-4097.
[3] YANG S K, AMBADE A V, WECK M. Main-chain supramolecular block copolymers [J]. Chemical Society Reviews, 2011, 40 (1): 129-137.
[4] ZHAO M, LI C J, SHAN X T, et al. A stretchable pillararene-containing supramolecular polymeric material with self-healing property [J]. Molecules, 2021, 26 (8): 2191:1-11.
[5] ZHOU Y J, JIE K C, ZHAO R, et al. Highly selective removal of trace isomers by nonporous adaptive pillararene crystals for chlorobutane purification [J]. Journal of the American Chemical Society, 2020, 142 (15): 6957-6961.
[6] JIE K C, ZHOU Y J, LI E R, et al. Nonporous adaptive crystals of pillararenes [J]. Accounts of Chemical Research, 2018, 51 (9): 2064-2072.
[7] TOM F A, GREEF D, MEIJER E W. Supramolecular polymers[J]. Nature, 2008, 453: 171-173.
[8] STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials [J]. Nature Materials,2010, 9(2):101-113.
[9] OGOSHI T, KANAI S, FUJINAMI S, et al. Para-bridged symmetrical pillar[5]arenes their lewis acid catalyzed synthesis and host-guest property [J]. Journal of the American Chemical Society, 2007, 130 (15): 5022-5023.
[10] TELLINI V H S, JOVER A, GARC?′A J C, et al. Thermodynamics of formation of host-guest supramolecular polymers [J]. Journal of the American Chemical Society, 2006, 128 (17): 5728-5734.
[11] CHEN G S, JIANG M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly [J]. Chemical Society Reviews, 2011, 40 (5): 2254-2266.
[12] YAN X Z, WANG F, ZHENG B, et al. Stimuli-responsive supramolecular polymeric materials [J]. Chemical Society Reviews, 2012, 41 (18): 6042-6065.
[13] DANJOU P E, GAEL D L, CORNUT D, et al. Supramolecular assistance for the selective demethylation of calixarene-based receptors [J]. the Journal of Organic Chemistry, 2015, 80 (10): 5084-5091.
[14] ZAYED J M, NOUVEL N, RAUWALD U, et al. Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water [J]. Chemical Society Reviews, 2010, 39 (8): 2806-2816.
[15] OGOSHI T, YAMAGISHI T A, NAKAMOTO Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry [J]. Chemical Reviews, 2016, 116 (14): 7937-8002.
[16] TIAN W, LI X X, WANG J X. Supramolecular hyperbranched polymers [J]. Chemical Communica-tions, 2017, 53 (17): 2531-2542.
[17] LI H, FAN X D, MIN X, et al. Controlled supramolecular architecture transformation from homopolymer to copolymer through competitive self-sorting method [J]. Macromolecular Rapid Communications, 2017, 38 (5): 1600631.
[18] CHEN Y Y, JIANG X M, GONG G F, et al. Pillararene-based aiegens: research progress and appealing applications [J]. Chemical Communi-cations, 2021, 57 (3): 284-301.
[19] OGOSHI T, HASHIZUME M, YAMAGISHI T A, et al. Synthesis, conformational and host-guest properties of water-soluble pillar[5]arene [J]. Chemical Communications,2010,46(21):3708-3710.
[20] STRUTT N L, ZHANG H C, GIESENER M A, et al. A self-complexing and self-assembling pillar[5]arene [J]. Chemical Communications, 2012, 48 (11): 1647-1649.
[21] OGOSHI T, YOSHIKOSHI K, AOKI T, et al. Photoreversible switching between assembly and disassembly of a supramolecular polymer involving an azobenzene-bridged pillar[5]arene dimer [J]. Chemical Communications,2013,49(78):8785-8787.
[22] XIA B Y, ZHENG B, HAN C Y, et al. A novel pH-responsive supramolecular polymer constructed by pillar[5]arene-based host-guest interactions [J]. Polymer Chemistry, 2013, 4 (6): 2019-2024.
[23] OGOSHI T, DEMACHI K, KITAJIMA K, et al. Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure [J]. Chemical Communi-cations, 2011, 47 (25): 7164-7166.
[24] HAN C Y, XIA B Y, CHEN J Z, et al. A pillar[5]arene-based anion responsive supramolecular polymer [J]. Royal Society of Chemistry Advances, 2013, 3 (36): 16089-16094.
[25] WANG K, WANG C Y, WANG Y, et al. Electrospun nanofibers and multi-responsive supramolecular assemblies constructed from a pillar[5]arene-based receptor [J]. Chemical Communi-cations, 2013, 49 (89): 10528-10530.
[26] ZHANG Z B, LUO Y, CHEN J Z, et al. Formation of linear supramolecular polymers that is driven by C-H-π interactions in solution and in the solid state [J].Angewandte Chemie (International Edition), 2011, 50 (6): 1397-1401.
[27] SONG N, CHEN D X, XIA M C, et al. Supramolecular assembly-induced yellow emission of 9,10-distyrylanthracene bridged bis(pillar[5]arene)s [J]. Chemical Communications, 2015, 51 (25): 5526-5529.
[28] YANG X Y, CAI W Q, DONG S, et al. Fluorescent supramolecular polymers based on pillar[5]arene for oled device fabrication [J]. ACS Macro Letters, 2017, 6 (7): 647-651.
[29] GUAN Y F, NI M, F, HU X Y, et al. Pillar[5]arene-based polymeric architectures constructed by orthogonal supramolecular interactions [J]. Chemical Communications, 2012, 48 (68): 8529-8531.
[30] HU X Y, WU X, WANG S, et al. Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly [J]. Polymer Chemistry, 2013, 4 (16): 4292-4297.
[31] GAO L Y, ZHANG Z B, ZHENG B, et al. Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based [c2]daisy chain [J]. Polymer Chemistry, 2014, 5 (19): 5734-5739.
[32] LIU S Y, WU Q X, ZHANG T Z, et al. Supramolecular brush polymers prepared from 1,3,4-oxadiazole and cyanobutoxy functionalised pillar[5]arene for detecting Cu2+[J]. Organic and Bio-molecular Chemistry, 2021, 19 (6): 1287-1291.
[33] WANG S L, WANG Y L, CHEN Z X, et al. The marriage of endo-cavity and exo-wall complexation provides a facile strategy for supramolecular polymerization [J]. Chemical Communications, 2015, 51 (16): 3434-3437.
[34] CHEN P P, MONDAL J H, ZHOU Y J, et al. Construction of a neutral linear supramolecular polymer via orthogonal donor-acceptor interactions and pillar[5]arene-based molecular recognition [J]. Polymer Chemistry, 2016, 7 (33): 5221-5225.
[35] XU J F, CHEN Y Z, WU L Z, et al. Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers [J]. Organic Letters, 2013, 15 (24): 6148-6151.
[36] LIU P, LI Z T, SHI B B, et al. Formation of linear side-chain polypseudorotaxane with supramolecular polymer backbone through neutral halogen bonds and pillar[5]arene-based host-guest interactions [J]. Chemistry, 2018, 24 (17): 4264-4267.
[37] LI H, FAN X D, QI M, et al. Supramolecular alternating polymer from crown ether and pillar[5]arene-based double molecular recognition for preparation of hierarchical materials [J]. Chemistry, 2016, 22 (1): 101-105.
[38] OGOSHI T, KAYAMA H, YAMAFUJI D, et al. Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host-guest complexation system and monofunctionalized pillar[6]arene [J]. Chemical Science, 2012, 3 (11): 3221-3226.
[39] WANG X Y, DENG H M, LI J, et al. A neutral supramolecular hyperbranched polymer fabricated from an AB2-type copillar[5]arene [J]. Macro-molecular Rapid Communications, 2013,34(23/24): 1856-1862.
[40] LIU Y, ZHANG Y, ZHU H, et al. A supramolecular hyperbranched polymer with multi-responsiveness constructed by pillar[5]arene-based host-guest recognition and its application in the breath figure method [J]. Materials Chemistry Frontiers, 2018, 2 (8): 1568-1573.
[41] LI H, CHEN W Z, XU F F, et al. A color-tunable fluorescent supramolecular hyperbranched polymer constructed by pillar[5]arene-based host-guest recognition and metal ion coordination interaction [J]. Macromolecular Rapid Communations, 2018, 39 (10): 1800053:1-6.
[42] LI H, FAN X D, SHANG X M, et al. A triple-monomer methodology to construct controllable supramolecular hyperbranched alternating polymers [J]. Polymer Chemistry, 2016, 7 (26): 4322-4325.
[43] FANG L, HU Y L, LI Q, et al. Fluorescent cross-linked supramolecular polymers constructed from a novel self-complementary AABB-type hetero-multitopic monomer [J]. Organic and Biomolecular Chemistry,2016,14 (17): 4039-4045.
[44] WU J, SUN S, FENG X Q, et al. Controllable aggregation-induced emission based on a tetraphenylethylene-functionalized pillar[5]arene via host-guest recognition [J]. Chemical Communi-cations, 2014, 50 (65): 9122-9125.
[45] LI Z Y, ZHANG Y Y, ZHANG C W, et al. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior [J]. Journal of the American Chemical Society, 2014, 136 (24): 8577-8589.
[46] SUN Y, WANG J, YAO Y. The first water-soluble pillar[5]arene dimer: synthesis and construction of a reversible fluorescent supramolecular polymer network in water [J]. Chemical Communications, 2016, 53 (1): 165-167.