|本期目录/Table of Contents|

[1]杨亦菲,杨 娟*,张媛媛,等.苯二酚异构体的花状Co@S掺杂碳修饰电极法检测[J].武汉工程大学学报,2023,45(01):42-47.[doi:10.19843/j.cnki.CN42-1779/TQ.202203017]
 YANG Yifei,YANG Juan*,ZHANG Yuanyuan,et al.Nanoflower-Like Co@S Doped Carbon Material for Detection ofDihydroxybenzene Isomers[J].Journal of Wuhan Institute of Technology,2023,45(01):42-47.[doi:10.19843/j.cnki.CN42-1779/TQ.202203017]
点击复制

苯二酚异构体的花状Co@S掺杂碳修饰电极法检测(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年01期
页码:
42-47
栏目:
化学与化学工程
出版日期:
2023-02-28

文章信息/Info

Title:
Nanoflower-Like Co@S Doped Carbon Material for Detection of
Dihydroxybenzene Isomers
文章编号:
1674 - 2869(2023)01 - 0042 - 06
作者:
杨亦菲杨 娟*张媛媛曾 婷万其进
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
YANG Yifei YANG Juan* ZHANG Yuanyuan ZENG Ting WAN Qijin
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
碳材料金属有机框架化合物邻苯二酚对苯二酚电化学传感器
Keywords:
carbon materials metal organic frameworks catechol hydroquinone electrochemical sensor
分类号:
O657.1
DOI:
10.19843/j.cnki.CN42-1779/TQ.202203017
文献标志码:
A
摘要:
在碱性条件下,以Co盐为金属源,以对甲苯磺酸为配体,室温水热合成Co-MOF前驱体。通过改变配体的用量制备了3种不同尺寸的Co-MOF。随后在700 ℃的N2下煅烧制得Co@S掺杂的碳材料(Co@S-C nanoflowers, SCN),用于对苯二酚(HQ)和邻苯二酚(CC)的同时电化学检测。制得的SCN呈纳米花状,由碳包裹的Co颗粒堆积而成,具有无定型结构。得益于SCN的良好导电性以及Co、S-C的协同催化作用,由其构建的传感器对HQ和CC具有较好的催化性能,同时检测时的氧化峰电位差为0.120 V。在最优条件下,HQ和CC的检出限、线性范围分别为0.03、0.10~140.00和0.10、0.30~50.00 μmol/L。将该传感器用于实际水样中HQ和CC的同时检测,加标回收率为95.1%~104.9%,表现出较好的实际应用前景。

Abstract:
Co-metal organic framework(Co-MOF) precursor was synthesized through solvothermal method at room temperature with the cobalt salt as metal source and p-toluenesulfonic acid as ligand in an alkaline environment. Three different sizes of Co-MOFs were prepared by adjusting the amount of ligand. Co@S doped carbon(Co@S-C nanoflower, SCN)was then prepared through pyrolysis of Co-MOF at 700 ℃ in N2 atmosphere and further utilized for simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CC). The obtained SCN has an amorphous structure and displays nanoflower-like morphology which is made of agglomerated Co@C. Benefited from the good conductivity and synergistic catalytic effect between Co and S-C, the sensor based on SCN has good catalytic performance. The gap of oxidation peak potential between HQ and CC is 0.120 V. Under the optimal conditions, the detection limits of the sensor are 0.03 and 0.10 μmol/L, and the linear ranges are 0.10-140.00 and 0.30-50.00 μmol/L for HQ and CC, respectively. The sensor is applied to water analysis with the recoveries of 95.1%-104.9%. These results imply that the sensor has a good practical application prospect.

参考文献/References:

1] YAN G H, CHEN G F, PENG Z Q, et al. The cross-linking mechanism and applications of catechol-metal polymer materials [J]. Advanced Materials Interfaces, 2021, 8(19): 2100239:1-18.

[2] QUAN W Y, HU Z, LIU H Z, et al. Mussel-inspired catechol-functionalized hydrogels and their medical applications [J]. Molecules, 2019, 24(14): 2586:1-27.
[3] CHEN X R, HU X Y, LU Q L, et al. Study on the differences in sludge toxicity and microbial community structure caused by catechol, resorcinol and hydroquinone with metagenomic analysis [J]. Journal of Environmental Management, 2022, 302: 114027:1-10.
[4] CHEN H L, YAO J, WANG F, et al. Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment [J]. Science of the Total Environment, 2010, 408(5): 1043-1049.
[5] YANG L, FAN S, DENG G, et al. Bridged β-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability:the simultaneous electrochemical determination of three phenols [J]. Biosensors Bioelectronics, 2015, 68: 617-625.
[6] HASSAN K M, HATHOOT A A, ABO OURA M F, et al. Simultaneous and selective electrochemical determination of hydroquinone, catechol and resorcinol at poly(1,5-diaminonaphthalene)/glassy carbon-modified electrode in different media [J]. RSC Advances, 2018, 8(12): 6346-6355.
[7] FENG X J, SHI Y L, HU Z G. Polyaniline/polysulfone composite film electrode for simultaneous determination of hydroquinone and catechol [J]. Materials Chemistry Physics, 2011, 131: 72-76.
[8] CHENG N Y, REN L, XU X, et al. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts [J]. Advanced Energy Materials, 2018, 8(25): 1801257:1-21.
[9] CHEN L F, LU Y, YU L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors [J]. Energy Environmental Science, 2017, 10(8): 1777-1783.
[10] ABDELHAMID H N, ZOU X D. Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO2 sorption [J]. Green Chemistry, 2018, 20(5): 1074-1084.
[11] YANG Q H, XU Q, YU S H, et al. Pd nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis [J]. Angewandte Chemie (International Edition), 2016, 55(11): 3685-3689.
[12] WEN B, YANG H B, LIN Y, et al. Controlling the heterogeneous interfaces of S, Co co-doped porous carbon nanosheets for enhancing the electromagnetic wave absorption [J]. Journal of Colloid and Interface Science, 2021, 586: 208-218.
[13] KUMAR R, MANJUNATHA M, ANUPAMA A V, et al. Synthesis, composition and spin-dynamics of FCC and HCP phases of pyrolysis derived Co-nanoparticles embedded in amorphous carbon matrix [J]. Ceramics International, 2019, 45(16):19879-19887.
[14] COSTANZO S, NGO A T, RUSSIER V, et al. Enhanced structural and magnetic properties of fcc colloidal crystals of cobalt nanoparticles[J]. Nanoscale, 2020, 12(47): 24020-24029.
[15] SUI X, CHEN H C, WANG H, et al. Unique Mo2C-CdS-Co@C heterojunction integrated with redox cocatalysts and multiple active sites for efficient photocatalytic H2 generation [J]. International Journal of Hydrogen Energy,2022,47:13386-13398.
[16] HOU C C, ZOU L L, XU Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites [J]. Advanced Materials, 2019, 31(46): 1904689:1-8.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-03-12
基金项目:国家自然科学基金(61701352);武汉工程大学青年科学基金(K2021069);湖北省教育厅科研计划项目(Q20211508);武汉工程大学研究生创新基金(CX2020275)
作者简介:杨亦菲,硕士研究生。E-mail:[email protected]
*通讯作者:杨 娟,博士,讲师。E-mail:[email protected]
引文格式:杨亦菲,杨娟,张媛媛,等. 苯二酚异构体的花状Co@S掺杂碳修饰电极法检测[J]. 武汉工程大学学报,2023,45(1):42-47.

更新日期/Last Update: 2023-03-14