[2] SPENCER B F, HOSKERE V, NARAZAKI Y. Advances in computer vision-based civil infrastructure inspection and monitoring[J]. Engineering, 2019, 5(2):199-222.
[3] BROERE W. Urban underground space: solving the problems of today’s cities[J]. Tunnelling and Underground Space Technology, 2016, 55: 245-248.
[4] DUNG C V, ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99:52-58.
[5] WANG F K. Edge detection of inner crack defects based on improved sobel operator and clustering algorithm[J]. Applied Mechanics and Materials, 2011, 55/56/57:467-471.
[6] SUN L, XING J, XIE L, et al. An adaptive threshold based canny algorithm for crack detection[J]. Microcomputer & Its Applications,2017,36(5):35-37.
[7] WANG W J, ZHANG A, WANG K C P, et al. Pavement crack width measurement based on laplace’s equation for continuity and unambiguity[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(2): 110-123.
[8] YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4):1525-1535.
[9] XIE S N, TU Z W. Holistically-nested edge detection[C]//Proceedings of the IEEE international conference on computer vision. Santiago:IEEE,2015:1395-1403.
[10] SCHMUGGE S J, RICE L, LINDBERG J, et al. Crack segmentation by leveraging multiple frames of varying illumination[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa : IEEE, 2017: 1045-1053.
[11] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[12] CHENG J R, XIONG W, CHEN W Y, et al. Pixel-level crack detection using U-Net[C]//TENCON 2018-2018 IEEE Region 10 Conference. Jeju: IEEE, 2018: 462-466.
[13] WU Z H, LU T, ZHANG Y D, et al. Crack detecting by recursive attention U-Net[C]//2020 3rd International Conference on Robotics, Control and Automation Engineering (RCAE). Chongqing: IEEE, 2020: 103-107.
[14] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. Cham: Springer, 2015: 234-241.
[15] HU Y, ZHAO C X. A novel LBP nased methods for pavement crack detection[J]. Journal of Pattern Recognition Research, 2010,5(1): 140-147.
[16] 郭香蓉,李鸿.一种基于集成学习的路面裂缝检测仿真算法[J].计算机仿真,2022,39(2):121-125.
[17] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas. arXiv[J]. arXiv preprint arXiv:2018,1804.03999.
[18] SU Z, LIU W Z, YU Z T, et al. Pixel difference networks for efficient edge detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2021: 5097-5107.
[19] YU Z T, ZHAO C Y, WANG Z Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5295-5305.
[20] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
[21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[22] 瞿中,陈雯.基于空洞卷积和多特征融合的混凝土路面裂缝检测[J]. 计算机科学,2022,49(3):192-196.