[2] SALEEM M, FARIDUDDIN Q, JANDA T. Multi-faceted role of salicylic acid in combating cold stress in plants:a review[J]. Journal of Plant Growth Regulation, 2020, 40(2):464-485.
[3] PLOHOVSKA S G, YEMETS A I, BLUME Y B. Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana[J]. Cytology and Genetics, 2016, 50(5):318-323.
[4] SUN B, LIU G L, PHAN T T, et al. Effects of cold stress on root growth and physiological metabolisms in seedlings of different sugarcane varieties[J]. Sugar Tech, 2017, 19(2):165-175.
[5] SACK L, MELCHER P J, ZWIENIECKI M A, et al. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods[J]. Journal of Experimental Botany, 2002, 53(378):2177-2184.
[6] SACK L, STREETER C M, HOLBROOK N M. Hydraulic analysis of water flow through leaves of sugar maple and red oak[J]. Plant Physiology, 2004, 134(4):1824-1833.
[7] LI Y, REN K, HU M Y, et al. Cold stress in the harvest period: effects on tobacco leaf quality and curing characteristics[J]. BMC Plant Biology, 2021, 21(1):1-15.
[8] ZHENG G H, PAN D M, NIU X Q, et al. Changes in cell Ca2+ distribution in loquat leaves and its effects on cold tolerance[J]. Korean Journal of Horticultural Science and Technology, 2014, 32(5):607-613.
[9] KIRAN A, KUMAR S, NAYYAR H, et al. Low temperature-induced aberrations in male and female reproductive organ development cause flower abortion in Chickpea[J]. Plant Cell and Environment,2019,42(7):2075-2089.
[10] SHARMA K D, NAYYAR H. Regulatory networks in pollen development under cold stress[J]. Frontiers in Plant Science, 2016, 7:1-13.
[11] PACINI E, DOLFERUS R. Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate[J]. Frontiers in Plant Science, 2019, 10:679:1-15.
[12] ARIIZUMI T, TORIYAMA K. Genetic regulation of sporopollenin synthesis and pollen exine development[J]. Annual Review of Plant Biology, 2011, 62:437-460.
[13] MULLER F, RIEU I. Acclimation to high tempera-ture during pollen development[J]. Plant Reproduction, 2016, 29(1/2):107-118.
[14] LIU B,MO W J, ZHANG D B, et al. Cold influences male reproductive development in plants: a hazard to fertility, but a window for evolution[J]. Plant and Cell Physiology, 2019, 60(1):7-18.
[15] SZéKELY á, SZALóKI T, LANTOS C, et al. Data of selected set of rice accessions at the germination stage under cold stress[J]. Data in Brief, 2022, 41:107929:1-6.
[16] ASHRAF M, MAO Q L, HONG J, et al. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis[J]. Plant, Cell & Environment, 2021, 44(11):3616-3627.
[17] 李佳萌,冯国军, 刘大军, 等. 低温胁迫对菜豆种子吸胀期间生理特性和发芽能力的影响[J]. 中国农学通报, 2020, 36(1):24-29.
[18] WELTI R, LI W Q, LI M Y, et al. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis[J]. The Journal of Biological Chemistry, 2002,277(35):31994-32002.
[19] ?RVAR B L, SANGWAN V, OMANN F, et al. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity[J]. The Plant Journal, 2000, 23(6):785-794.
[20] MA Y, DAI X Y, XU Y Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209-1221.
[21] ASLAM M, FAKHER B, ASHRAF M A, et al. Plant low-temperature stress: signaling and response[J]. Agronomy, 2022, 12:1-21
[22] GILMOUR S J, ZARKA D G, STOCKINGER E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. The Plant Journal, 1998, 16(4):433-442.
[23] MEDINA J, BARGUES M, TEROL J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J]. Plant Physiology, 1999, 119(2):463-470.
[24] STOCKINGER E J, GILMOUR S J, THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3):1035-1040.
[25] DOHERTY C J, VAN BUSKIRK H A, MYERS S J, et al. Roles for Arabidopsis CAMTA transcription factors incold-regulated gene expression and freezing tolerance[J]. The Plant Cell, 2009, 21(3):1043-1054.
[26] CHINNUSAMY V, OHTA M, KANRAR S, et al. ICE1: a regulator of cold-inducedtranscriptome and freezing tolerancein Arabidopsis[J]. Genes & Development, 2003, 17(8):972-984.
[27] TADAV S K. Cold stress tolerance mechanisms in plants[J]. Agronomy for Stustainable Development, 2010, 30(3):515-527.
[28] 阮淑洁. 外源化学物质对番茄幼苗抗冷性的影响[D]. 合肥:安徽农业大学, 2011.
[29] YU J, CANG J, LU Q W, et al. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8):1780403:1-11.
[30] YANG Y, YAO N, JIA Z K, et al. Effect of exogenous abscisic acid on cold acclimation in two Magnolia species[J]. Biologia Plantarum, 2016, 60(3):555-562.
[31] PU Y J, CISSE E H M, ZHANG L J, et al. Coupling exogenous melatonin with Ca2+ alleviated chilling stress in Dalbergia odorifera T. Chen[J]. Trees-Structure and Function, 2021, 35(5):1541-1554.
[32] CHANG J J, GUO Y L, ZHANG Z X, et al. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon[J]. Acta Physiologiae Plantarum, 2020, 42(10):1-12.
[33] SUN Y J, HE Y H, IRFAN A R, et al. Exogenous brassinolide enhances the growth and cold resistance of maize (Zea mays L.) seedlings under chilling stress[J]. Agronomy, 2020, 10(4):1-18.
[34] ZHANG J G,LI S J,CAI Q, et al. Exogenous diethyl aminoethyl hexanoate ameliorates low temperature stress by improving nitrogen metabolism in maize seedlings[J]. Plos One,2020,15(4):e0232294:1-23.
[35] SALEEM M, FARIDUDDIN Q, JANDA T. Multifaceted role of salicylic acid in combating cold stress in plants: a review[J]. Journal of Plant Growth Regulation, 2021, 40(2):464-485.
[36] 韩燕峰, 董醇波, 葛伟,等. 共生功能体的微生物组组成、组装及微生物间互作研究进展[J]. 山地农业生物学报, 2022, 41(2):1-12.
[37] ACUNA-RODRIGUEZ I S, NEWSHAM K K, GUNDEL P E, et al. Functional roles of microbial symbionts in plant cold tolerance[J]. Ecology Letters, 2020, 23(6):1034-1048.
[38] DE SOUZA E M, LAMB T I, LAMB T A, et al. Rhizospheric soil from rice paddy presents isolable bacteria able to induce cold tolerance in rice plants[J]. Journal of Soil Science and Plant Nutrition, 2021, 21:1993-2006.
[39] LI S X, YANG W Y, GUO J H, et al. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi[J]. Plant Physiology and Biochemistry, 2020,154:1-10.
[40] PASBANI B, SALIMI A, ALIASGHARZAD N, et al. Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants[J]. Scientia Horticulturae, 2020, 272:109575:1-11.
[41] BARKA E A, NOWAK J, CLéMENT C. Enhance-ment of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN[J]. Applied and Environmental Microbiology, 2006, 72(11):7246-7252.
[42] OSMAN M E H, KASIM W A, OMAR M N, et al. Impact of bacterial priming on some stress tolerance mechanisms and growth of cold stressed wheat seedlings[J]. International Journal of Plant Biology, 2014, 4(1):1-5.
[43] AROCA R, PORCEL R, RUIZ-LOZANO J M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins inPhaseolus vulgarisunder drought, cold or salinity stresses[J]. New Phytologist, 2006, 173:808-816.
[44] MA J, JANOU?KOVá M, LI Y, et al. Impact of arbuscular mycorrhizal fungi(AMF) on cucumber growth and phosphorus uptake under cold stress[J]. Functional Plant Biology, 2015, 42:1158-1167.
[45] WU Q S, ZOU Y N. Beneficial roles of arbuscular mycorrhizas in citrus seedlingsat temperature stress[J]. Scientia Horticulturae, 2010, 125:289-293.
[46] PEDRANZANI H, TAVECCHIO N, GUTIéRREZ M, et al. Differential effects of cold stress on theantioxidant response of mycorrhizal and non-mycorrhizal Jatrophacurcas (L.) plants[J]. Journal of Agricultural Science, 2015, 7(8):35-43.
[47] GUO T L, ZHANG X Z, LI Y X, et al. Overexpression of MdARD4 accelerates fruit ripening and increases cold hardiness in tomato[J]. International Journal of Molecular Sciences, 2020, 21(17):1-15.
[48] LI S Y, LIU X A, ZHAO L Z, et al. Overexpression of IbSINA5 increases cold tolerance through a CBF SINA-COR mediated module in sweet potato[J]. Phyton-International Journal of Experimental Botany, 2021, 90(3):761-772.
[49] MU J Q, FU Y J, LIU B C, et al. SiFBA5, a cold-responsive factor from Saussurea involucrata promotes cold resilience and biomass increase in transgenic tomato plants under cold stress[J]. BMC Plant Biology, 2021, 21(1):1-10.
[50] FANG J C, TSAI Y C, CHOU W L, et al. A CCR4-associated factor1, OsCAF1B, confers tolerance of low-temperature stress to rice seedlings[J]. Plant Molecular Biology, 2021, 105(1/2):177-192.
[51] DONG X Y,LIU Z G,MI W B, et al. Overexpression of BrAFP1 gene from winter rapeseed (Brassica rapa) confers cold tolerance in Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 155:338-345.