子查询返回的值不止一个。当子查询跟随在 =、!=、<、<=、>、>= 之后,或子查询用作表达式时,这种情况是不允许的。 植物抗低温胁迫的研究进展-《武汉工程大学学报》
|本期目录/Table of Contents|

[1]郭佳强,曾 鑫,陈孝平*.植物抗低温胁迫的研究进展[J].武汉工程大学学报,2023,45(01):119-125.[doi:10.19843/j.cnki.CN42-1779/TQ.202112015]
 GUO Jiaqiang,ZENG Xin,CHEN Xiaoping*.Advances in Plant Resistance to Low Temperature Stress[J].Journal of Wuhan Institute of Technology,2023,45(01):119-125.[doi:10.19843/j.cnki.CN42-1779/TQ.202112015]
点击复制

植物抗低温胁迫的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年01期
页码:
119-125
栏目:
综述
出版日期:
2023-02-28

文章信息/Info

Title:
Advances in Plant Resistance to Low Temperature Stress
文章编号:
1674 - 2869(2023)02 - 0119 - 07
作者:
郭佳强曾 鑫陈孝平*
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
GUO Jiaqiang ZENG Xin CHEN Xiaoping*
School of Environmental Ecology and Biological Engineering,Wuhan Institute of Technology,Wuhan 430205,China

关键词:
低温胁迫植物低温信号策略细胞代谢分子机制
Keywords:
cold stress plants cold signal strategy cellular metabolism molecular mechanism
分类号:
Q945.78
DOI:
10.19843/j.cnki.CN42-1779/TQ.202112015
文献标志码:
A
摘要:
低温胁迫会抑制植物生长发育,尽管植物可有效感知低温胁迫的发生并做出反应,但仅仅依靠植物本身的抗冻能力还不足以抵抗低温胁迫对植物的伤害。低温胁迫造成植物根系生长异常且对水分的吸收减少、叶片结构变化且叶绿体受损、影响植物的开花生殖和抑制种子萌发。增强植物抗低温胁迫能力主要策略是使用抗低温胁迫调节物质(激素和生长调节剂)、接种共生微生物(丛枝菌根真菌、解淀粉芽孢杆菌和巴西固氮螺菌等)和进行基因工程改造。低温胁迫如何影响植物细胞代谢还没有定论,共生微生物增强植物抗低温胁迫能力的分子机制尚不明晰。因此,探究受低温胁迫植物的细胞代谢通路和植物细胞响应低温胁迫的分子机制可能会成为未来该领域的研究热点。

Abstract:
Cold stress can inhibit plant growth and development. Although plants can effectively sense the occurrence of cold stress and respond to it, the frost resistance of plants alone is not enough to resist the damage to plants caused by cold stress. Cold stress causes abnormal growth of plant roots and reduces water absorption, changes leaf structure and causes damage to chloroplasts, affects plant flowering and reproduction and inhibits seed germination.The main strategies to enhance the ability of plants to resist cold stress are the use of cold stress regulators (hormones and growth regulators), inoculation of symbiotic microorganisms (Arbuscular mycorrhizal fungi, Bacillus amyloliquefaciens, Azospirillumbrasilense,etc.) and genetic engineering. How cold stress affects plant cell metabolism is still inconclusive, and the molecular mechanism that symbiotic microorganisms enhance plant resistance to cold stress remains unclear. Therefore, exploring the metabolic pathways of plant cells and the molecular mechanism of plant cells responding to cold stress may become research hotspots in this field in the future.

参考文献/References:

[1] LIU H L, XIN W, WANG Y L, et al. An integrated analysis of the rice transcriptome and lipidome reveals lipid metabolism plays a central role in rice cold tolerance[J]. BMC Plant Biology, 2022, 22(1):1-16.

[2] SALEEM M, FARIDUDDIN Q, JANDA T. Multi-faceted role of salicylic acid in combating cold stress in plants:a review[J]. Journal of Plant Growth Regulation, 2020, 40(2):464-485.
[3] PLOHOVSKA S G, YEMETS A I, BLUME Y B. Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana[J]. Cytology and Genetics, 2016, 50(5):318-323.
[4] SUN B, LIU G L, PHAN T T, et al. Effects of cold stress on root growth and physiological metabolisms in seedlings of different sugarcane varieties[J]. Sugar Tech, 2017, 19(2):165-175.
[5] SACK L, MELCHER P J, ZWIENIECKI M A, et al. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods[J]. Journal of Experimental Botany, 2002, 53(378):2177-2184.
[6] SACK L, STREETER C M, HOLBROOK N M. Hydraulic analysis of water flow through leaves of sugar maple and red oak[J]. Plant Physiology, 2004, 134(4):1824-1833.
[7] LI Y, REN K, HU M Y, et al. Cold stress in the harvest period: effects on tobacco leaf quality and curing characteristics[J]. BMC Plant Biology, 2021, 21(1):1-15.
[8] ZHENG G H, PAN D M, NIU X Q, et al. Changes in cell Ca2+ distribution in loquat leaves and its effects on cold tolerance[J]. Korean Journal of Horticultural Science and Technology, 2014, 32(5):607-613.
[9] KIRAN A, KUMAR S, NAYYAR H, et al. Low temperature-induced aberrations in male and female reproductive organ development cause flower abortion in Chickpea[J]. Plant Cell and Environment,2019,42(7):2075-2089.
[10] SHARMA K D, NAYYAR H. Regulatory networks in pollen development under cold stress[J]. Frontiers in Plant Science, 2016, 7:1-13.
[11] PACINI E, DOLFERUS R. Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate[J]. Frontiers in Plant Science, 2019, 10:679:1-15.
[12] ARIIZUMI T, TORIYAMA K. Genetic regulation of sporopollenin synthesis and pollen exine development[J]. Annual Review of Plant Biology, 2011, 62:437-460.
[13] MULLER F, RIEU I. Acclimation to high tempera-ture during pollen development[J]. Plant Reproduction, 2016, 29(1/2):107-118.
[14] LIU B,MO W J, ZHANG D B, et al. Cold influences male reproductive development in plants: a hazard to fertility, but a window for evolution[J]. Plant and Cell Physiology, 2019, 60(1):7-18.
[15] SZéKELY á, SZALóKI T, LANTOS C, et al. Data of selected set of rice accessions at the germination stage under cold stress[J]. Data in Brief, 2022, 41:107929:1-6.
[16] ASHRAF M, MAO Q L, HONG J, et al. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis[J]. Plant, Cell & Environment, 2021, 44(11):3616-3627.
[17] 李佳萌,冯国军, 刘大军, 等. 低温胁迫对菜豆种子吸胀期间生理特性和发芽能力的影响[J]. 中国农学通报, 2020, 36(1):24-29.
[18] WELTI R, LI W Q, LI M Y, et al. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis[J]. The Journal of Biological Chemistry, 2002,277(35):31994-32002.
[19] ?RVAR B L, SANGWAN V, OMANN F, et al. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity[J]. The Plant Journal, 2000, 23(6):785-794.
[20] MA Y, DAI X Y, XU Y Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209-1221.
[21] ASLAM M, FAKHER B, ASHRAF M A, et al. Plant low-temperature stress: signaling and response[J]. Agronomy, 2022, 12:1-21
[22] GILMOUR S J, ZARKA D G, STOCKINGER E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. The Plant Journal, 1998, 16(4):433-442.
[23] MEDINA J, BARGUES M, TEROL J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J]. Plant Physiology, 1999, 119(2):463-470.
[24] STOCKINGER E J, GILMOUR S J, THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3):1035-1040.
[25] DOHERTY C J, VAN BUSKIRK H A, MYERS S J, et al. Roles for Arabidopsis CAMTA transcription factors incold-regulated gene expression and freezing tolerance[J]. The Plant Cell, 2009, 21(3):1043-1054.
[26] CHINNUSAMY V, OHTA M, KANRAR S, et al. ICE1: a regulator of cold-inducedtranscriptome and freezing tolerancein Arabidopsis[J]. Genes & Development, 2003, 17(8):972-984.
[27] TADAV S K. Cold stress tolerance mechanisms in plants[J]. Agronomy for Stustainable Development, 2010, 30(3):515-527.
[28] 阮淑洁. 外源化学物质对番茄幼苗抗冷性的影响[D]. 合肥:安徽农业大学, 2011.
[29] YU J, CANG J, LU Q W, et al. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8):1780403:1-11.
[30] YANG Y, YAO N, JIA Z K, et al. Effect of exogenous abscisic acid on cold acclimation in two Magnolia species[J]. Biologia Plantarum, 2016, 60(3):555-562.
[31] PU Y J, CISSE E H M, ZHANG L J, et al. Coupling exogenous melatonin with Ca2+ alleviated chilling stress in Dalbergia odorifera T. Chen[J]. Trees-Structure and Function, 2021, 35(5):1541-1554.
[32] CHANG J J, GUO Y L, ZHANG Z X, et al. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon[J]. Acta Physiologiae Plantarum, 2020, 42(10):1-12.
[33] SUN Y J, HE Y H, IRFAN A R, et al. Exogenous brassinolide enhances the growth and cold resistance of maize (Zea mays L.) seedlings under chilling stress[J]. Agronomy, 2020, 10(4):1-18.
[34] ZHANG J G,LI S J,CAI Q, et al. Exogenous diethyl aminoethyl hexanoate ameliorates low temperature stress by improving nitrogen metabolism in maize seedlings[J]. Plos One,2020,15(4):e0232294:1-23.
[35] SALEEM M, FARIDUDDIN Q, JANDA T. Multifaceted role of salicylic acid in combating cold stress in plants: a review[J]. Journal of Plant Growth Regulation, 2021, 40(2):464-485.
[36] 韩燕峰, 董醇波, 葛伟,等. 共生功能体的微生物组组成、组装及微生物间互作研究进展[J]. 山地农业生物学报, 2022, 41(2):1-12.
[37] ACUNA-RODRIGUEZ I S, NEWSHAM K K, GUNDEL P E, et al. Functional roles of microbial symbionts in plant cold tolerance[J]. Ecology Letters, 2020, 23(6):1034-1048.
[38] DE SOUZA E M, LAMB T I, LAMB T A, et al. Rhizospheric soil from rice paddy presents isolable bacteria able to induce cold tolerance in rice plants[J]. Journal of Soil Science and Plant Nutrition, 2021, 21:1993-2006.
[39] LI S X, YANG W Y, GUO J H, et al. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi[J]. Plant Physiology and Biochemistry, 2020,154:1-10.
[40] PASBANI B, SALIMI A, ALIASGHARZAD N, et al. Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants[J]. Scientia Horticulturae, 2020, 272:109575:1-11.
[41] BARKA E A, NOWAK J, CLéMENT C. Enhance-ment of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN[J]. Applied and Environmental Microbiology, 2006, 72(11):7246-7252.
[42] OSMAN M E H, KASIM W A, OMAR M N, et al. Impact of bacterial priming on some stress tolerance mechanisms and growth of cold stressed wheat seedlings[J]. International Journal of Plant Biology, 2014, 4(1):1-5.
[43] AROCA R, PORCEL R, RUIZ-LOZANO J M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins inPhaseolus vulgarisunder drought, cold or salinity stresses[J]. New Phytologist, 2006, 173:808-816.
[44] MA J, JANOU?KOVá M, LI Y, et al. Impact of arbuscular mycorrhizal fungi(AMF) on cucumber growth and phosphorus uptake under cold stress[J]. Functional Plant Biology, 2015, 42:1158-1167.
[45] WU Q S, ZOU Y N. Beneficial roles of arbuscular mycorrhizas in citrus seedlingsat temperature stress[J]. Scientia Horticulturae, 2010, 125:289-293.
[46] PEDRANZANI H, TAVECCHIO N, GUTIéRREZ M, et al. Differential effects of cold stress on theantioxidant response of mycorrhizal and non-mycorrhizal Jatrophacurcas (L.) plants[J]. Journal of Agricultural Science, 2015, 7(8):35-43.
[47] GUO T L, ZHANG X Z, LI Y X, et al. Overexpression of MdARD4 accelerates fruit ripening and increases cold hardiness in tomato[J]. International Journal of Molecular Sciences, 2020, 21(17):1-15.
[48] LI S Y, LIU X A, ZHAO L Z, et al. Overexpression of IbSINA5 increases cold tolerance through a CBF SINA-COR mediated module in sweet potato[J]. Phyton-International Journal of Experimental Botany, 2021, 90(3):761-772.
[49] MU J Q, FU Y J, LIU B C, et al. SiFBA5, a cold-responsive factor from Saussurea involucrata promotes cold resilience and biomass increase in transgenic tomato plants under cold stress[J]. BMC Plant Biology, 2021, 21(1):1-10.
[50] FANG J C, TSAI Y C, CHOU W L, et al. A CCR4-associated factor1, OsCAF1B, confers tolerance of low-temperature stress to rice seedlings[J]. Plant Molecular Biology, 2021, 105(1/2):177-192.
[51] DONG X Y,LIU Z G,MI W B, et al. Overexpression of BrAFP1 gene from winter rapeseed (Brassica rapa) confers cold tolerance in Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 155:338-345.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-12-21
基金项目:湖北省技术创新专项重大项目(2019ABA091)
作者简介:郭佳强,硕士研究生。E-mail:guojiaqiangjjw@163.com
*通讯作者:陈孝平,博士,副教授。E-mail:xiao.ping.chen@foxmail.com
引文格式:郭佳强,曾鑫,陈孝平. 植物抗低温胁迫的研究进展[J]. 武汉工程大学学报,2023,45(2):119-125.
更新日期/Last Update: 2023-05-04