[2] KUDO A,MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38(1):253-278.
[3] SHEN R C,XIE J,XIANG Q J,et al. Ni-based photocatalytic H2-production cocatalysts[J]. Chinese Journal of Catalysis,2019,40(3):240-288.
[4] LIANG Z Z,SHEN R C,NG Y H,et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production[J]. Journal of Materials Science & Technology,2020,56:89-121.
[5] WANG J,SUN S J,ZHOU R,et al. A review:synthesis,modification and photocatalytic applications of ZnIn2S4[J]. Journal of Materials Science & Technology,2021,78:1-19.
[6] SHEN R C,ZHANG L P,CHEN X Z,et al. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution[J]. Applied Catalysis B:Environmental,2020,266:118619:1-9.
[7] GAO L F,BAO W L,KUKLIN A V,et al. Hetero-MXenes:theory,synthesis,and emerging applications[J]. Advanced Materials,2021,33(10):2004129:1-43.
[8] KHAN K,TAO X P,SHI M,et al. Visible-light-driven photocatalytic hydrogen production on Cd0.5Zn0.5S nanorods with an apparent quantum efficiency exceeding 80%[J]. Advanced Functional Materials,2020,30(42):2003731:1-8.
[9] RAHMAN M Z,KIBRIA M G,MULLINS C B. Metal-free photocatalysts for hydrogen evolution[J]. Chemical Society Reviews,2020,49(6):1887-1931.
[10] LOW J X,CAO S W,YU J G,et al. Two-dimensional layered composite photocatalysts[J]. Chemical Communications,2014,50(74):10768-10777.
[11] CHEN S,HUANG D L,XU P,et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting:will we stop with photocorrosion?[J]. Journal of Materials Chemistry A,2020,8(5):2286-2322.
[12] WAGEH S,AL-GHAMDI A A,JAFER R,et al. A new heterojunction in photocatalysis:S-scheme heterojunction[J]. Chinese Journal of Catalysis,2021,42(5):667-669.
[13] WANG J,LIU D,ZHU Y F,et al. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI[J]. Applied Catalysis B:Environmental,2018,231:251-261.
[14] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis,2020,41(1):9-20.
[15] LI X B,KANG B B,DONG F,et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy,2021,81:105671:1-11.
[16] WANG L B,CHENG B,ZHANG L Y,et al. In situ irradiated XPS investigation on S-scheme TiO2@ ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small,2021,17(41):2103447:1-9.
[17] REN D D, SHEN R C, JIANG Z M,et al. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions[J]. Chinese Journal of Catalysis,2020,41(1):31-40.
[18] SHEN R C,LU X Y,ZHENG Q Q,et al. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts[J]. Solar RRL,2021,5(7):2100177:1-7.
[19] XU H T, XIAO R, HUANG J R, et al. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis,2021,42(1):107-114.
[20] SHEN R C,HE K L,ZHANG A P,et al. In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness- dependent photocatalytic H2 production[J]. Applied Catalysis B:Environmental,2021,291:120104:1-12.
[21] LI Z S,HUANG G H,LIU K,et al. Hierarchical BiOX (X=Cl,Br,I) microrods derived from bismuth-MOFs:in situ synthesis,photocatalytic activity and mechanism[J]. Journal of Cleaner Production,2020,272:122892:1-11.
[22] DU H,GUO H L,LIU Y N,et al. Metallic 1T-LixMoS2 cocatalyst significantly enhanced the photocatalytic H2 evolution over Cd0.5Zn0.5S nanocrystals under visible light irradiation[J]. ACS Applied Materials & Interfaces,2016,8(6):4023-4030.
[23] HUANG Z Y,XU Z H,MAHBOUB M,et al. PbS/CdS core-shell quantum dots suppress charge transfer and enhance triplet transfer[J]. Angewandte Chemie(International Edition),2017,56(52):16583-16587.
[24] YI F T,GAN H H,JIN H F,et al. Sulfur-and chlorine-co-doped g-C3N4 nanosheets with enhanced active species generation for boosting visible-light photodegradation activity[J]. Separation and Purification Technology,2020,233:115997:1-13.
[25] REN D D,LIANG Z Z,NG Y H,et al. Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution[J]. Chemical Engineering Journal,2020,390:124496:1-9.
[26] LOW J X,YU J G,JARONIEC M,et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694:1-20.
[27] FRISENDA R,MOLINA-MENDOZA A J,MUELLER T,et al. Atomically thin p-n junctions based on two-dimensional materials[J]. Chemical Society Reviews,2018,47(9):3339-3358.
[28] ZHOU P, YU J G, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials,2014,26(29):4920-4935.
[29] XU Q L,ZHANG L Y,CHENG B,et al. S-scheme heterojunction photocatalyst[J]. Chem,2020,6(7):1543-1559.
[30] FU J W,XU Q L,LOW J X,et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B:Environmental,2019,243:556-565.
[31] HE F,ZHU B C,CHENG B,et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B:Environmental,2020,272:119006:1-12.
[32] FEI X G,TAN H Y,CHENG B,et al. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations[J]. Acta Physico-Chimica Sinica,2021,37(6):2010027:1-9.
[33] ENESCA A,ANDRONIC L. Photocatalytic activity of S-scheme heterostructure for hydrogen production and organic pollutant removal:a mini-review[J]. Nanomaterials,2021,11(4):871:1-20.
[34] LI X B,XIONG J,GAO X M,et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials,2020,387:121690:1-11.
[35] BAI J X, SHEN R C,CHEN W L,et al. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/ Fe2O3 ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces[J]. Chemical Engineering Journal,2022,429:132587:1-13.
[36] CHENG C,HE B W,FAN J J,et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism[J]. Advanced Materials,2021,33(22):2100317:1-8.
[37] PADMANABHAN N T, THOMAS N, LOUIS J,et al. Graphene coupled TiO2 photocatalysts for environmental applications:a review[J]. Chemosphere,2021,271:129506:1-33.
[38] XU S H,WANG J F,GUO J P,et al. Activating Co nanoparticles on P-doped carbon nitride via enhancing Mott-Schottky effect by constructing interfacial chemical bonding for the efficient dehydrogenation of ammonia-borane[J]. Applied Surface Science,2020,533:146999:1-10.
[39] JIANG Z M,CHEN Q, ZHENG Q Q, et al. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution[J]. Acta Physico-Chimica Sinica,2021,37(6):2010059:1-11.
[40] CHEN Y J,TIAN G H,REN Z Y,et al. Hierarchical core-shell carbon nanofiber@ZnIn2S4 composites for enhanced hydrogen evolution performance[J]. ACS Applied Materials & Interfaces,2014,6(16):13841-13849.
[41] GUO X L,PENG Y H,LIU G B,et al. An efficient ZnIn2S4@CuInS2 core-shell p-n heterojunction to boost visible-light photocatalytic hydrogen evolution[J]. The Journal of Physical ChemistryC,2020,124(11):5934-5943.
[42] MISHRA A,MEHTA A,BASU S,et al. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting:a review[J]. Carbon,2019,149:693-721.
[43] LIU Y M,GONG Z Y,Lü H, et al. Rational design of Au decorated Mn0.5Cd0.5S/WO3 step-scheme heterostructure with multichannel charge transfer and efficient H2 generation[J]. Applied Surface Science,2020,526:146734:1-10.
[44] REN D D,ZHANG W N,DING Y N,et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution [J]. Solar RRL,2020,4(8):1900423:1-11.
[45] LIU J H,WEI X N,SUN W Q,et al. Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis[J]. Environmental Research,2021,197:111136:1-10.
[46] TAO J N,YU X H,LIU Q Q,et al. Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2021,585:470-479.
[47] LUO J H,LIN Z X,ZHAO Y,et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese Journal of Catalysis,2020,41(1):122-130.
[48] CHEN Y L, SU F Y,XIE H Q, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2021,404:126498:1-9.
[49] XI Y M,CHEN W B,DONG W R,et al. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field [J]. ACS Applied Materials & Interfaces,2021,13(33):39491-39500.
[50] LI C X,LIU X T,HUO P W,et al. Boosting H2 production over C60-mediated NH2-MIL-125(Ti)/Zn0.5Cd0.5S S-scheme heterojunction via enhanced interfacial carrier separation [J]. Small,2021,17(39):2102539:1-7.
[51] BIE C B, ZHU B C, XU F Y, et al. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction[J]. Advanced Materials, 2019, 31(42): 1902868:1-6.
[52] LI D D,KASSYMOVA M,CAI X C,et al. Photocatalytic CO2 reduction over metal-organic framework-based materials[J]. Coordination Chemistry Reviews,2020,412:213262:1-16.
[53] ZHU Z Z,LI X X,QU Y T,et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction[J]. Nano Research,2020,14(1):81-90.
[54] WU Z Y,LI C R,LI Z,et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis [J]. ACS Nano,2021,15(3):5696-5705.
[55] ZHANG W H, MOHAMED A R,ONG W J. Z-scheme photocatalytic systems for carbon dioxide reduction:where are we now?[J]. Angewandte Chemie(International Edition),2020,59(51):22894-22915.
[56] XIE Q,HE W M,LIU S W,et al. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling[J]. Chinese Journal of Catalysis,2020,41(1):140-153.
[57] XU F X, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nature Communications,2020,11:4613:1-9.
[58] DENG H Z, FEI X G, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chemical Engineering Journal,2021,409:127377:1-10.
[59] QIU Q Q, ZHU P, LIU Y, et al. Highly efficient In2S3/WO3 photocatalysts:Z-scheme photocatalytic mechanism for enhanced photocatalytic water pollutant degradation under visible light irradiation[J]. RSC Advances,2021,11(6):3333-3341.
[60] ENESCA A, ISAC L. Tuned S-scheme Cu2S_TiO2_WO3 heterostructure photocatalyst toward S-metolachlor (S-MCh) herbicide removal[J]. Materials,2021,14(9):2231:1-14.
[61] FAN H X,ZHOU H L,LI W J,et al. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity[J]. Applied Surface Science,2020,504:144351:1-8.
[62] SHI Y H, HUANG J H, ZENG G M, et al. Photocatalytic membrane in water purification:is it stepping closer to be driven by visible light?[J]. Journal of Membrane Science,2019,584:364-392.
[63] YANG Y, ZHANG C, LAI C, et al. BiOX (X=Cl,Br,I) photocatalytic nanomaterials:applications for fuels and environmental management[J]. Advances in Colloid and Interface Science,2018,254:76-93.
[64] GHOREISHIAN S M,RANJITH K S,PARK B,et al. Full-spectrum-responsive Bi2S3@CdS S-scheme heterostructure with intimated ultrathin RGO toward photocatalytic Cr(VI) reduction and H2O2 production:experimental and DFT studies[J]. Chemical Engineering Journal, 2021, 419:129530:1-15.
[65] GOGOI D,MAKKAR P,GHOSH N N. Solar light-irradiated photocatalytic degradation of model dyes and industrial dyes by a magnetic CoFe2O4-gC3N4 S-scheme heterojunction photocatalyst[J]. ACS Omega,2021,6(7):4831-4841.
[66] VAN PHAM V,MAI D Q,BUI D P,et al. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst:new generation architectural structure of heterojunctions toward visible-light-driven NO degradation[J]. Environmental Pollution,2021,286:117510:1-11.
[67] SHEN J T, QIAN L, HUANG J L, et al. Enhanced degradation toward Levofloxacin under visible light with S-scheme heterojunction In2O3/Ag2CO3:internal electric field,DFT calculation and degradation mechanism[J]. Separation and Purification Technology,2021,275:119239:1-14.
[68] WU S S,YU X,ZHANG J L,et al. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal[J]. Chemical Engineering Journal,2021,411:128555:1-12.
[69] YANG Y,ZENG Z T,ZENG G M,et al. Ti3C2 MXene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production[J]. Applied Catalysis B:Environmental,2019,258:117956:1-11.
[70] SUK M,CHUNG M W,HAN M H,et al. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts[J]. Catalysis Today,2021,359:99-105.
[71] ZHANG H, JIA L H,WU P, et al. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification[J]. Applied Surface Science,2020,527:146584:1-11.
[72] YANG Y, CHENG B,YU J G, et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity[J/OL]. Nano Research,2021,(2021-07-22)[2021-09-20]. https://doi.org/10.1007/s12274-021-3733-0.