|本期目录/Table of Contents|

[1]毛惠东,李 芳,覃远航*.Fe-Co-N-C氧还原催化剂的制备及性能[J].武汉工程大学学报,2023,45(02):148-155.[doi:10.19843/j.cnki.CN42-1779/TQ.202204026]
 MAO Huidong,LI Fang,QIN Yuanhang*.Synthesis and Properties of Fe-Co-N-C Catalysts forOxygen Reduction Reaction[J].Journal of Wuhan Institute of Technology,2023,45(02):148-155.[doi:10.19843/j.cnki.CN42-1779/TQ.202204026]
点击复制

Fe-Co-N-C氧还原催化剂的制备及性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年02期
页码:
148-155
栏目:
化学与化学工程
出版日期:
2023-04-30

文章信息/Info

Title:
Synthesis and Properties of Fe-Co-N-C Catalysts for
Oxygen Reduction Reaction
文章编号:
1674 - 2869(2023)02 - 0148 - 08
作者:
毛惠东李 芳覃远航*
武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),
新型反应器与绿色化学工艺湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
MAO Huidong LI Fang QIN Yuanhang*
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology; Key Laboratory of Green Chemical
Engineering Process (Wuhan Institute of Technology), Ministry of Education ; Hubei key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology), Wuhan 430205, China

关键词:
氧还原反应非贵金属催化剂沸石咪唑酯骨架材料质子交换膜燃料电池
Keywords:
oxygen reduction reaction non-noble metal catalyst zeolitic imidazolate frameworks materials proton exchange membrane fuel cell

分类号:
TM911.4
DOI:
10.19843/j.cnki.CN42-1779/TQ.202204026
文献标志码:
A
摘要:
为了提高氮掺杂碳(N-C)材料的氧还原性能,采用后吸附法基于可在高温炭化过程中形成富缺陷碳材料及均匀分散的高活性M-Nx位点的沸石咪唑酯骨架-8衍生制备了Fe-Co-N-C催化剂。电化学测试结果表明采用150 mg Co-N-C催化剂吸附0.07 mmol Fe制备的Fe-Co-N-C催化剂在0.1 mol/L HClO4中具有较高的半波电位(0.843 V vs. RHE)和较低的过氧化氢产率(< 4%)。物性表征结果表明Fe-Co-N-C催化剂的优异氧还原活性可归因于其双金属活性位点(Fe/Co-Nx)、丰富的微/介孔结构、较高的石墨化程度以及Fe/Fe3C和Fe-Nx的共同作用。

Abstract:
To improve the oxygen reduction performance of nitrogen-doped carbon (N-C) material, a post-adsorption method was used based on zeolite imidazolate framework-8 (ZIF-8) that can form defect-rich carbon materials and uniformly dispersed and highly active M-Nx sites during high-temperature carbonization,and ZIF-8-derived Fe-Co-N-C catalysts were synthesized. Electrochemical characterizations show that the Fe-Co-N-C catalyst derived from 150 mg of Co-N-C adsorbing 0.07 mmol of Fe(acac)3 has the largest half wave potential of 0.843 V vs. oxygen reduction reaction in 0.1 mol/L of HClO4, and a low hydrogen peroxide yield (< 4%). Physicochemical characterization indicates that the high oxygen reduction reaction activity of Fe-Co-N-C can be attributed to its bimetallic active site (Fe/Co-Nx), rich micro/mesoporous structure, high degree of graphitization, and the collective effect of Fe/Fe3C and Fe-Nx.

参考文献/References:

[1] BORGHEI M, LEHTONEN J, LIU L, et al. Advanced biomass‐derived electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials, 2018, 30(24): 1703691.

[2] 王娟. ZIFs衍生的钴-氮-碳氧还原电催化剂活性位点的调控[D]. 武汉:华中科技大学, 2019.
[3] 王胜,张胜全. 金属-有机框架材料ZIF-8的合成机理研究[J]. 甘肃冶金, 2016, 38(6): 44-48.
[4] ZHU Z J, CHEN C M, CAI M Q, et al. Porous Co-NC ORR catalysts of high performance synthesized with ZIF-67 templates[J]. Materials Research Bulletin, 2019, 114: 161-169.
[5] WANG X X, CULLEN D A, PAN Y T, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced Materials,2018,30(11): 1706758.
[6] ZHAO D, SHUI J L, GRABSTANOWICZ L R, et al. Highly efficient non‐precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks[J]. Advanced Materials, 2014, 26(7): 1093-1097.
[7] SUN T, JIANG Y F, WU Q, et al. Is iron nitride or carbide highly active for oxygen reduction reaction in acidic medium?[J]. Catalysis Science & Technology, 2017, 7(1): 51-55.
[8] ZHANG D Y, CHEN W X, LI Z, et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction[J]. Chemical Communications, 2018,54(34):4274-4277.
[9] FANG X, JIAO L, YU S H, et al. Metal-organic framework‐derived FeCo‐N‐Doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media[J]. ChemSusChem, 2017, 10(15): 3019-3024.
[10] GALIOTE N A, OLIVEIRA F E R, LIMA F H B. FeCo-NC oxygen reduction electrocatalysts: activity of the different compounds produced during the synthesis via pyrolysis[J]. Applied Catalysis B: Environmental, 2019, 253: 300-308.
[11] LI W, DING W, NIE Y, et al. Transformation of metal-organic frameworks into huge-diameter carbon nanotubes with high performance in proton exchange membrane fuel cells[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22290-22296.
[12] JIN Q Y, REN B W, CHEN J P, et al. A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery[J]. Applied Catalysis B: Environmental, 2019, 256: 117887.
[13] GONG S P, WANG C L, JIANG P, et al. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems[J]. Journal of Materials Chemistry A, 2018, 6(27): 13254-13262.
[14] ZHAO L, ZHANG Y, HUANG L B, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts[J]. Nature Communications, 2019, 10(1): 1-11.
[15] LI Z H, SHAO M F, ZHOU L, et al. Directed growth of metal‐organic frameworks and their derived carbon‐based network for efficient electrocatalytic oxygen reduction[J]. Advanced Materials, 2016, 28(12): 2337-2344.
[16] ZHOU L, ZHOU P, ZHANG Y L, et al. 3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis[J]. Journal of Energy Chemistry, 2021, 55: 355-360.
[17] SUN Y Y, SILVIOLI L, SAHRAIE N R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts[J]. Journal of the American Chemical Society,2019,141(31): 12372- 12381.
[18] CHEN Y Z, WANG C, WU Z Y, et al. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials, 2015, 27(34): 5010-5016.
[19] LI G N,ZHANG J J,LI W S,et al. 3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/Fe 3 C for efficient oxygen reduction reaction and supercapacitor[J]. Nanoscale, 2018, 10(19): 9252-9260.
[20] ZHU Y Z, CHEN X F, LIU J, et al. Rational design of Fe/N/S-Doped nanoporous carbon catalysts from covalent triazine frameworks for efficient oxygen reduction[J]. ChemSusChem, 2018, 11(14): 2402-2409.
[21] VARNELL J A, SOTIROPOULOS J S, BROWN T M, et al. Revealing the role of the metal in non-precious-metal catalysts for oxygen reduction via selective removal of Fe[J]. ACS Energy Letters, 2018, 3(4): 823-828.

相似文献/References:

[1]罗海彬,曹庆成,覃远航*.Co掺杂ZIF-8衍生合成高效Co-N-C氧还原催化剂的研究[J].武汉工程大学学报,2023,45(01):35.[doi:10.19843/j.cnki.CN42-1779/TQ.202204025]
 LUO Haibin,CAO Qincheng,QIN Yuanhang*.Cobalt-Doped ZIF-8-Derived High-Performance Co-N-COxygen Reduction Catalyst[J].Journal of Wuhan Institute of Technology,2023,45(02):35.[doi:10.19843/j.cnki.CN42-1779/TQ.202204025]

备注/Memo

备注/Memo:
收稿日期:2022-04-27
基金项目:国家自然科学基金(21306144)
作者简介:毛惠东,硕士研究生。E-mail:[email protected]
*通讯作者:覃远航,博士,教授。E-mail:[email protected]
引文格式:毛惠东,李芳,覃远航. Fe-Co-N-C氧还原催化剂的制备及性能[J]. 武汉工程大学学报,2023,45(2):148-155.

更新日期/Last Update: 2023-05-04