[2] WICK W, OSSWALD M, WICK A, et al. Treatment of glioblastoma in adults [J]. Therapeutic Advances in Neurological Disorders, 2018, 11: 1756286418790452: 1-13.
[3] LIU E K, SULMAN E P, WEN P Y, et al. Novel therapies for glioblastoma [J]. Current Neurology and Neuroscience Reports, 2020, 20: 1-12.
[4] MEDIKONDA R, DUNN G, RAHMAN M, et al. A review of glioblastoma immunotherapy [J]. Nature Reviews Neuroscience, 2021, 151(1): 41-53.
[5] JACKSON C M, CHOI J, LIM M. Mechanisms of immunotherapy resistance: lessons from glioblastoma [J]. Nature Immunology, 2019, 20(9): 1100-1109.
[6] YANG C B, ZHANG W, DONG X D, et al. A natural product solution to aging and aging-associated diseases [J]. Pharmacology & Therapeutics, 2020, 216: 107673-107690.
[7] HOU Y J, DAN X L, BABBAR M, et al. Ageing as a risk factor for neurodegenerative disease[J]. Nature Reviews Neurology, 2019, 15(10): 565-581.
[8] ATELLA V, PIANO MORTARI A, KOPINSKA J, et al. Trends in age-related disease burden and healthcare utilization [J]. Aging Cell,2018,18:e12861:1-8.
[9] FRANCESCHI C, GARAGNANI P, MORSIANI C, et al. The continuum of aging and age-related diseases: common mechanisms but different rates [J]. Frontiers in Medicine, 2018, 5: 61-84.
[10] NGUYEN H M, GUZ-MONTGOMERY K, LOWE D B, et al. Pathogenetic features and current management of glioblastoma [J]. Cancers, 2021, 13(4): 856-896.
[11] RAJARATNAM V, ISLAM M M, YANG M, et al. Glioblastoma: pathogenesis and current status of chemotherapy and other novel treatments [J]. Cancers, 2020, 12(4): 937-965.
[12] GNANAVEL M,MURUGESAN A,KONDA MANI S, et al. Identifying the mirna signature association with aging-related senescence in glioblastoma [J]. International Journal of Molecular Sciences, 2021, 22(2): 517-531.
[13] JAWHARI S, RATINAUD M H, VERDIER M. Glioblastoma, hypoxia and autophagy: a survival-prone “menage-a-trois”[J].Cell Death and Disease, 2016 (7):e2434:1-10.
[14] VENNETI S, THOMPSON C B. Metabolic reprogramming in brain tumors[J]. Annual Review of Pathology: Mechanisms of Disease, 2017, 12: 515-545.
[15] HARRISON R A, DE GROOT J F. Treatment of glioblastoma in the elderly [J]. Drugs Aging, 2018, 35(8): 707-718.
[16] WANG H W, WANG X R, XU L P, et al. Prognostic significance of age related genes in patients with lower grade glioma [J]. Journal of Cancer, 2020, 11(13): 3986-3999.
[17] LI L L, LIU Y G. Aging-related gene signature regulated by nlrp3 predicts glioma progression [J]. American Journal of Cancer Research, 2015, 5(1): 442-449.
[18] BRATTON S B, SALVESEN G S. Regulation of the apaf-1-caspase-9 apoptosome[J]. Journal of Cell Science, 2010, 123(19): 3209-3214.
[19] CAVALCANTE G C,SCHAAN A P, CABRAL G F, et al. A cell’s fate: an overview of the molecular biology and genetics of apoptosis [J]. International journal of molecular sciences, 2019, 20(17): 4133-4153.
[20] SAGA K, KANEDA Y. Oncolytic Sendai virus-based virotherapy for cancer: recent advances [J]. Oncolytic Virotherapy, 2015, 4: 141-147.
[21] SARGAZI S, ABGHARI A Z, SARANI H, et al. Relationship between casp9 and casp10 gene polymorphisms and cancer susceptibility: evidence from an updated meta-analysis [J]. Applied Biochemistry and Biotechnology, 2021, 193(12): 4172-4196.
[22] BACH D H, PARK H J, LEE S K. The dual role of bone morphogenetic proteins in cancer [J]. Molecular Therapy-Oncolytics, 2018, 8: 1-13.
[23] HOVER L D, ABEL T W, OWENS P. Genomic analysis of the BMP family in glioblastomas [J]. Translational Oncogenomics, 2015, 7: 1-9.
[24] GUO M, JIANG Z F, ZHANG X M, et al. miR-656 inhibits glioma tumorigenesis through repression of BMPR1A [J]. Carcinogenesis, 2014, 35(8): 1698-1706.
[25] LAOUKILI J, KOOISTRA M R, BRAS A, et al. Foxm1 is required for execution of the mitotic programme and chromosome stability [J]. Nature Cell Biology, 2005, 7(2): 126-136.
[26] HALASI M, GARTEL A L. Fox (m1) news—it is cancerfox (m1) news—it is cancer[J]. Molecular Cancer Therapeutics, 2013, 12(3): 245-254.
[27] DAI J, YANG L L, WANG J Y, et al. Prognostic value of foxm1 in patients with malignant solid tumor: a meta-analysis and system review [J]. Disease Markers, 2015: 352478:1-10.
[28] XU X S, MIAO R C, WAN Y, et al. Foxm1 as a novel therapeutic target for cancer drug therapy[J]. Asian Pacific Journal of Cancer Prevention, 2015, 16(1): 23-29.
[29] PENG W X, HAN X, ZHANG C L, et al. Foxm1-mediated rfc5 expression promotes temozolomide resistance[J]. Cell Biology and Toxicology, 2017, 33: 527-537.
[30] BORHANI S, GARTEL A L. Foxm1: a potential therapeutic target in human solid cancers[J]. Expert Opinion on Therapeutic Targets, 2020, 24(3): 205-217.
[31] LI Z, LI W L, CAO L, et al. Pknox2 suppresses gastric cancer through the transcriptional activation of igfbp5 and p53 [J]. Oncogene, 2019, 38(23): 4590-4604.
[32] ZHANG T, GUO J R, GU J, et al. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments[J]. Oncology Reports, 2019, 41(1): 279-291.
[33] DONG C Y, ZHANG J W, FANG S, et al. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells[J]. Cell Division, 2020, 15(1): 1-9.
[34] WANG Y L, ZHAO W J, XIAO Z, et al. A risk signature with four autophagy‐related genes for predicting survival of glioblastoma multiforme[J]. Journal of Cellular and Molecular Medicine, 2020, 24(7): 3807-3821.
[35] XIAO K, TAN J, YUAN J, et al. Prognostic value and immune cell infiltration of hypoxic phenotype‐related gene signatures in glioblastoma microenvironment[J]. Journal of Cellular and Molecular Medicine, 2020, 24(22): 13235-13247.