[2] CHAMBADAL P. Les centrales nucleases[M]. Paris: Armand Colin, 1957.
[3] CURZON F L, AHLBORN B. Efficiency of a Carnot engine at maximum power output[J]. American Journal of Physics, 1975, 43(1):22-24.
[4] ANDRESEN B, SALAMON P, BERRY R S. Thermodynamics in finite time[J]. Physics Today, 1984, 37(9):62-70.
[5] RUBIN M H. Optimal configuration of a class of irreversible heat engines I[J]. Physical Review A(General Physics), 1979, 19(3):1272-1276.
[6] AHLBORN B, BARNARD A J. Efficiency reduction of heat engines due to power extraction[J]. American Journal of Physics, 1990, 58(5):498-499.
[7] GUTKOWICZ-KRUSIN D, PROCACCIA I, ROSS J. On the efficiency of rate processes. Power and efficiency of heat engines[J]. The Journal of Chemical Physics, 1978, 69(9):3898-3906.
[8] SPENCE R D, HARRISION M J. Speed dependence of the efficiency of heat engines[J]. American Journal of Physics, 1985, 53(9):890-892.
[9] REBHAN E, AHLBORN B. Frequency-dependent performance of a nonideal Carnot engine[J]. American Journal of Physics, 1987, 55(5):423-428.
[10] GORDON J M. Maximum power point characteristics of heat engines as a general thermodynamic problem[J]. American Journal of Physics, 1989, 57(12):1136-1142.
[11] SALAMON P, NITZAN A. Finite time optimizations of a Newton’s law Carnot cycle[J]. The Journal of Chemical Physics, 1981, 74(6):3546-3560.
[12] 陈林根, 孙丰瑞, 陈文振. 卡诺热机的最佳利润与效率间的关系[J]. 热能动力工程, 1991, 6(4):237-241.
[13] 孙丰瑞, 陈林根, 陈文振. 二热源机的全息热效率与利润率谱[J]. 内燃机学报, 1991, 9(3):286-287.
[14] 陈林根, 孙丰瑞, 陈文振. 两源热机有限时间?经济性能界限和优化准则[J]. 科学通报, 1991, 36(3):233-235.
[15] SIENIUTYCZ S, SALAMON P. Advances in thermodynamics[M]. New York:Physics, 1990.
[16] BERRY R S, SALAMON P, HEAL G. On a relation between economic and thermodynamic optima[J]. Resources and Energy, 1978, 1(2):125-137.
[17] CLARK U A. Thermodynamic optimization: an interface with economic analysis[J]. Journal of Non-Equilibrium Thermodynamics, 1986, 11(1/2):85-122.
[18] TSATSARONIS G. Thermoeconomic analysis and optimization of energy systems[J]. Progress in Energy and Combustion Science, 1993, 19(3):227-257.
[19] 严子浚. η~λΡ最大时卡诺热机的η和Ρ[J]. 厦门大学学报(自然科学版), 1986, 25(3):279-286.
[20] 吴锋, 孙丰瑞, 陈林根. 1/2自旋不可逆量子卡诺热机输出功率和熵产率的协调优化[J]. 武汉化工学院学报, 1997, 19(2):88-91.
[21] 金晓昌, 吴锋, 孙丰瑞, 等. E目标下量子卡诺热机有限时间热力学性能界限[J]. 电站系统工程, 1996, 12(5):53-55.
[22] WANG J H, HE J Z. Optimization on a three-level heat engine working with two noninteracting fermions in a one-dimensional box trap[J]. Journal of Applied Physics, 2012, 111(4):043505:1-6.
[23] 吴锋, 汪拓, 陈林根, 等. 量子斯特林热机的输出功和热效率[J]. 机械工程学报,2014, 50(4):150-154.
[24] WANG J H, HE J Z, MAO Z Y. Performance of a quantum heat engine cycle working with harmonic oscillator systems[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50(2):163-176.
[25] YIN Y, CHEN L G, WU F. Performance analysis and optimization for generalized quantum Stirling refrigeration cycle with working substance of a particle confined in a general 1D potential[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 97:57-63.
[26] WANG J H, WU Z Q, HE J Z. Quantum Otto engine of a two-level atom with single-mode fields[J]. Physical Review E, 2012, 85(4):041148:1-6.
[27] ZHANG J W,ZHANG J Q,DING G Y, et al.? Dynamical control of quantum heat engines using exceptional points[J].?Nature Communications, 2022, 13(1):6225:1-7.
[28] FAHRIZA A, SUTANTYO T E P, ABDULLAH Z. Optimizations of multilevel quantum engine with N noninteracting fermions based on Lenoir cycle[J]. The European Physical Journal Plus, 2022, 137(9):1030:1-8.
[29] 刘存, 殷勇, 杨晗, 等. 不可逆量子斯特林热泵循环性能分析与优化[J]. 武汉工程大学学报, 2021, 43(2):232-236.
[30] 丁佳, 殷勇, 陈林根, 等. 量子狄塞尔热泵循环性能分析[J]. 武汉工程大学学报, 2022, 44(1):92-96.