[2] 董涵. 基于机器视觉的焊缝定位跟踪系统的研究与实现[D].南京:东南大学,2020.
[3] 吴献辉, 陈绪兵, 胡泰然. 基于光栅式双目技术的3D照相技术研究[J]. 武汉工程大学学报, 2015, 37(11):52-57.
[4] DU R Q, XU Y L, HOU Z, et al. Strong noise image processing for vision-based seam tracking in robotic gas metal arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5/6/7/8): 2135-2149.
[5] 陈华斌,孔萌,吕娜,等. 视觉传感技术在机器人智能化焊接中的研究现状[J]. 电焊机,2017,47(3):1-7.
[6] ZOU Y B, ZHOU W L. Automatic seam detection and tracking system for robots based on laser vision[J]. Mechatronics, 2019, 63: 102261:1-16.
[7] HE Y S, CHEN Y X, XU Y L, et al. Autonomous detection of weld seam profiles via a model of saliency-based visual attention for robotic arc welding[J]. Journal of Intelligent & Robotic Systems, 2016, 81(3/4): 395-406.
[8] LI X H, LI X D, KHYAM M O, et al. Robust welding seam tracking and recognition[J]. IEEE Sensors Journal, 2017, 17(17): 5609-5617.
[9] 曹爽,安建成. 狼群优化的二维Otsu快速图像分割算法[J]. 计算机工程与科学,2018, 40(7):1221-1226.
[10] 孙惠杰,邓廷权,李艳超. 改进的分水岭图像分割算法[J]. 哈尔滨工程大学学报,2014,35(7):857-864.
[11] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11): 2274-2281.
[12] CHEN S H, TENG X, SANG X X, et al. Automatic recognition of welding seam defects in TOFD images based on tensorflow[J].Automatic Control and Computer Sciences,2022,56(1):58-66.
[13] AI Y W, LEI C, CHENG J, et al. Prediction of weld area based on image recognition and machine learning in laser oscillation welding of aluminum alloy[J]. Optics & Lasers in Engineering,2023,160:107258:1-13.
[14] CHEN S F, YANG D Z, LIU J, et al. Automatic weld type classification, tacked spot recognition and weld ROI determination for robotic welding based on modified YOLOv5[J]. Robotics and Computer-Integrated Manufacturing, 2023, 81:102490:1-14.
[15] NAJI O A A M, SHAH H N M, ANWAR N S N, et al. Square groove detection based on F?rstner with canny edge operator using laser vision sensor[J]. The International Journal of Advanced Manufacturing Technology,2023, 125(5/6):2885-2894.
[16] GAO X,LIANG Z M,ZHANG X M, et al. Penetration state recognition based on stereo vision in GMAW process by deep learning[J]. Journal of Manufacturing Processes, 2023, 89:349-361.
[17] SINGH A, KALAICHELVI V, KARTHIKEYAN R. Performance analysis of object detection algorithms for robotic welding applications in planar environment[J]. International Journal of Computer Integrated Manufacturing, 2023,36(7):1083-1108.
[18] ZOU Y B, ZENG G H. Light-weight segmentation network based on SOLOv2 for weld seam feature extraction[J]. Measurement, 2023,208:112492:1-13.
[19] GUO F, ZHENG W B, LIAN G F, et al. A v-shaped weld seam measuring system for large workpieces based on image recognition[J]. The International Journal of Advanced Manufacturing Technology, 2023,124(1/2):229-243.
[20] SINGH A, KALAICHELVI V, KARTHIKEYAN R. Application of convolutional neural network for classification and tracking of weld seam shapes for TAL brabo manipulator[J]. Materials Today: Proceedings, 2020,28(2):491-497.
[21] LI J, JIN S S, WANG C J, et al. Weld line recognition and path planning with spherical tank inspection robots[J]. Journal of Field Robotics, 2022, 39(2):131-152.
[22] 张永帅,杨国威,王琦琦,等. 基于全卷积神经网络的焊缝特征提取[J]. 中国激光, 2019, 46(3):0302002:1-8.
[23] YU R, KERSHAW J, WANG P, et al. Real-time recognition of arc weld pool using image segmentation network[J]. Journal of Manufacturing Processes, 2021, 72:159-167.
[24] HU Z W, CHENG W, GE H L, et al. Research progress of robot vision sensing weld seam tracking technology[J]. Journal of Physics: Conference Series, 2022,2395: 012058:1-7.
[25] 韩沛文,周靖,蒋林,等. 基于激光传感器的弧焊机器人焊缝跟踪研究[J]. 电焊机, 2017, 47(10):94-98.
[26] DING Y Y, HUANG W, KOVACEVIC R. An on-line shape-matching weld seam tracking system[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42: 103-112.
[27] 邹焱飚,王研博,周卫林. 焊缝跟踪应用的线激光视觉伺服控制系统[J]. 光学精密工程, 2016, 24(11):2689-2698.
[28] NJAASTAD E B, EGELAND O. Automatic touch-up of welding paths using 3D vision[J]. IFAC-Papers Online, 2016, 49(31): 73-78.
[29] BANAFIAN N, FESHARAKIFARD R, MENHAJ M B. Precise seam tracking in robotic welding by an improved image processing approach[J]. The International Journal of Advanced Manufacturing Technology, 2021,114(1/2):251-270.
[30] YIN Z Q, MA X Q, ZHEN X, et al. Welding seam detection and tracking based on laser vision for robotic arc welding[J]. Journal of Physics: Conference Series, 2020,1650(2):022030:1-10.
[31] LIU C F, SHEN J Q, HU S S, et al, Seam tracking system based on laser vision and CGAN for robotic multi-layer and multi-pass MAG welding[J]. Engineering Applications of Artificial Intelligence, 2022,116:105377:1-14.
[32] ZHANG G, YUN T J, OH W B. A study on seam tracking in robotic GMA welding process[J]. Materials Today: Proceedings, 2020,22(4):1771-1777.
[33] ZOU Y B, ZHU M Q, CHEN X Z. A robust detector for automated welding seam tracking system[J]. Journal of Dynamic Systems, Measurement, and Control, 2021,143(7):071001:1-14.
[34] LIU C, WANG H, HUANG Y, et al. Welding seam recognition and tracking for a novel mobile welding robot based on multi-layer sensing strategy[J]. Measurement Science and Technology, 2022,33(5):055109:1-13.
[35] ZHAO X H, ZHANG Y W, WANG H, et el. Research on trajectory recognition and control technology of real-time tracking welding[J]. Sensors, 2022,22(21): 8546:1-22.
[37] ZHANG Z H, MALASHKHIA L, ZHNG Y, et al. Design of Gaussian process based model predictive control for seam tracking in a laser welding digital twin environment[J]. Journal of Manufacturing Processes, 2022,80:816-828.