[2] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26 (2): 163-166.
[3] JEANMAIRE D L, VAN DUYNE R P. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. Journal of Electroanalytical Chemistry,1977 ,84:1-20.
[4] KIM J, JANG Y, KIM N J, et al. Study of chemical enhancement mechanism in nonplasmonic surface enhanced Raman spectroscopy (SERS) [J]. Frontiers in Chemistry, 2019, 7: 582.
[5] KAO Y C, HAN X M, LEE Y H, et al. Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min [J]. ACS Nano, 2020, 14 (2): 2542-2552.
[6] ZHANG D J, PENG L Q, SHANG X L, et al. Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors [J]. Nature Communications, 2020, 11 (1): 2603.
[7] ALVAREZ-PUEBLA R A, AROCA R F. Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering [J]. Analytical Chemistry, 2009, 81 (6): 2280-2285.
[8] LAI Y C, WANG C J, SHAO H. Thioctic acid-modified silver nanoplates on copper foil for low interference detection of fluoranthene by surface-enhanced Raman spectroscopy [J]. ACS Applied Nano Materials, 2020, 3 (2): 1800-1807.
[9] MILLIGAN K, SHAND N C, GRAHAM D, et al. Detection of multiple nitroaromatic explosives via formation of a janowsky complex and SERS [J]. Analytical Chemistry, 2020, 92 (4): 3253-3261.
[10] LEONG Y X, LEE Y H, KOH C S L, et al. Surface-enhanced Raman scattering (sers) taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors [J]. Nano Letters, 2021, 21 (6): 2642-2649.
[11] TAO C A, AN Q, ZHU W, et al. Cucurbit[n]urils as a SERS hot-spot nanocontainer through bridging gold nanoparticles [J]. Chemical Communications, 2011, 47 (35): 9867-9869.
[12] OUYANG L, ZHU L H, RUAN Y F, et al. Preparation of a native β-cyclodextrin modified plasmonic hydrogel substrate and its use as a surface-enhanced Raman scattering scaffold for antibiotics identification [J]. Journal of Materials Chemistry C, 2015, 3 (29): 7575-7582.
[13] TAYLOR R W, LEE T C, SCHERMAN O A, et al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit [n] uril “glue” [J]. ACS Nano, 2011, 5 (5): 3878-3887.
[14] CHEN J M, GUO L H, CHEN L F, et al. Sensing of hydrogen sulfide gas in the Raman-silent region based on gold nano-bipyramids (Au NBPs) encapsulated by zeolitic imidazolate framework-8 [J]. ACS Sensors, 2020, 5 (12): 3964-3970.
[15] REN X H, CHESHARI E C, QI J Y, et al. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A [J]. Microchimica Acta, 2018, 185:242:1-8.
[16] ASHLEY J, WU K Y, HANSEN M F, et al. Quantitative detection of trace level cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and surface-enhanced Raman spectroscopy nanopillars [J]. Analytical Chemistry, 2017, 89 (21): 11484-11490.
[17] YANG Y Y, LI Y T, ZHAI W L, et al. Electrokinetic preseparation and molecularly imprinted trapping for highly selective SERS detection of charged phthalate plasticizers [J]. Analytical Chemistry,2021,93 (2): 946-955.
[18] SU J, WANG D F, NO?RBEL L, et al. Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection. [J]. Analytical Chemistry 2017, 89 (4): 2531-2538.
[19] WANG Z Y, ZONG S F, WU L, et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications [J]. Chemical Reviews, 2017, 117 (12): 7910-7963.
[20] CAO Y W C, JIN R C, MIRKIN C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J]. Science,2002,297(5586): 1536-1540.
[21] LEE M, LEE K, KIM K H, et al. SERS-based immunoassay using a gold array-embedded gradient microfluidic chip [J]. Lab on a Chip,2012,12 (19): 3720-3727.
[22] GAO W C, LI B, YAO R Z, et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis [J]. Analytical Chemistry, 2017, 89 (18): 9836-9842.
[23] 郑思洁,李向葵,曹飘扬,等.多孔有机聚合物在固相萃取应用中的研究进展[J].武汉工程大学学报,2021,43(2):155-162.
[24] 陈丹,王春琼,杨德志,等.基于双面透明胶带/AuNPs基底的表面增强拉曼光谱检测烟草中仲丁灵[J].分析试验室,2022,41(5):535-538.
[25] OUYANG L, ZHANG Q, MA G N, et al. A new dual-spectroscopic strategy for the direct detection of aristolochic acids in blood and tissue [J]. Analytical Chemistry, 2019, 92(13): 8154-8161.
[26] MARKINA N E, MARKIN A V, ZAKHAREVICH A M, et al. Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction [J]. Microchimica Acta, 2017, 184 (10): 3937-3944.
[27] FENG J F, HU Y X, GRANT E, et al. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor [J]. Food Chemistry,2018, 239: 816-822.
[28] 来永超,陈静,占金华.萃取-表面增强拉曼光谱联用技术及其在有害物质检测领域的应用[J].中国科学:化学, 2021, 51: 665-678.
[29] YU S H, LIU Z G, WANG W X, et al. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals [J]. Talanta, 2018, 178: 498-506.
[30] LIU Z G, WANG Y, DENG R, et al. Fe3O4@ graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one [J]. ACS Applied Materials & Interfaces, 2016, 8 (22): 14160-14168.
[31] PLATANIA E, LOFRUMENTO C, LOTTINI E, et al. Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles [J]. Analytical and Bioanalytical Chemistry, 2015, 407 (21): 6505-6514.
[32] OUYANG L, DAI P, YAO L, et al. A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring [J]. Analyst, 2019, 144 (18): 5528-5537.
[33] XIA Z P, LI D, DENG W. Identification and detection of volatile aldehydes as lung cancer biomarkers by vapor generation combined with paper-based thin-film microextraction [J]. Analytical Chemistry, 2021, 93 (11): 4924-4931.
[34] MORELLI L, ANDREASEN S Z, Jendresen C B, et al. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring [J]. Analyst, 2017, 142 (23): 4553-4559.
[35] SUBAIHI A, TRIVEDI D K, HOLLYWOOD K A, et al. Quantitative online liquid chromatography-surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites [J]. Analytical Chemistry, 2017, 89 (12): 6702-6709.
[36] XIAO L F, WANG C Q, DAI C, et al. Untargeted tumor metabolomics with liquid chromatography-surface-enhanced Raman spectroscopy [J]. Angewandte Chemie (International Edition), 2020, 59 (9): 3439-3443.
[37] P?IKRYL J, KLEPáRNíK K, FORET F. Photodepo-sited silver nanoparticles for on-column surface-enhanced Raman spectrometry detection in capillary electrophoresis [J]. Journal of Chromatography A, 2012, 1226: 43-47.
[38] LI D W, QU L L, ZHAI W L, et al. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy [J]. Environmental Science & Technology, 2011,45 (9): 4046-4052.
[39] ZOU Y X, ZHANG Y L, XU Y T, et al. Portable and label-free detection of blood bilirubin with graphene-isolated-Au-nanocrystals paper strip [J]. Analytical Chemistry, 2018, 90 (22): 13687-13694.
[40] WANG X K, CHOI N, CHENG Z Y, et al. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor [J]. Analytical Chemistry, 2016, 89 (2): 1163-1169.
[41] GAO X F, BORYCZKA J, KASANI S, et al. Enabling direct protein detection in a drop of whole blood with an “on-strip” plasma separation unit in a paper-based lateral flow strip [J]. Analytical Chemistry, 2021, 93 (3): 1326-1332.
[42] TRAN V, WALKENFORT B, K?NIG M, et al. Rapid, quantitative, and ultrasensitive point‐of‐care testing: a portable SERS reader for lateral flow assays in clinical chemistry [J]. Angewandte Chemie (International Edition), 2019, 58 (2): 442-446.
[43] 杨鑫,郭鹏程,徐传围,等.便携式拉曼光谱仪结合化学计量法的水质分析[J].武汉工程大学学报,2020,42(1):28-32.
[44] ZENG Y, REN J Q, SHEN A G, et al. Splicing nanoparticles-based “click” SERS could aid multiplex liquid biopsy and accurate cellular imaging [J]. Journal of American Chemical Society, 2018, 140:10649-10652.