[2] ZHANG X, ZHAO W Y, ZHANG Y, et al. A review of resource recovery from seawater desalination brine [J]. Reviews in Environmental Science and Bio/Technology,2021,20(2):333-361.
[3] YU Z,CHENG S A,GU R N,et al. Interfacial solar evaporator for clean water production and beyond:from design to application [J]. Applied Energy,2021,299:117317:1-20.
[4] RAVI KUMAR K,KRISHNA CHAITANYA N V V ,SENDHIL KUMAR N. Solar thermal energy technologies and its applications for process heating and power generation-a review [J]. Journal of Cleaner Production,2021,282:125296:1-40.
[5] ZHOU L, TAN Y L, WANG J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination [J]. Nature Photonics,2016,10(6):393-398.
[6] LI H R, YAN Z,LI Y, et al. Latest development in salt removal from solar-driven interfacial saline water evaporators:advanced strategies and challenges [J]. Water Research,2020,177:115770:1-19.
[7] SHARON H,REDDY K S. A review of solar energy driven desalination technologies [J]. Renewable and Sustainable Energy Reviews,2015,41:1080-1118.
[8] XIAO G,WANG X H,NI M J,et al. A review on solar stills for brine desalination [J]. Applied Energy,2013,103:642-652.
[9] XU Z R, LI Z D, JIANG Y H, et al. Recent advances in solar-driven evaporation systems [J]. Journal of Materials Chemistry A,2020,8(48):25571-25600.
[10] CAO S S,JIANG Q S,WU X H,et al. Advances in solar evaporator materials for freshwater generation [J]. Journal of Materials Chemistry A,2019,7(42):24092-24123.
[11] 李庆维.多孔海绵基太阳能界面蒸发材料制备及其性能研究[D]. 兰州:兰州理工大学,2020.
[12] ZHU L L,GAO M M,PEH C K N,et al. Recent progress in solar-driven interfacial water evaporation:advanced designs and applications [J]. Nano Energy,2019,57:507-518.
[13] DENG Z Y, ZHOU J H, MIAO L, et al. The emergence of solar thermal utilization:solar-driven steam generation [J]. Journal of Materials Chemistry A,2017,5(17):7691-7709.
[14] CHEN C J,KUANG Y D,HU L B. Challenges and opportunities for solar evaporation [J]. Joule,2019,3(3):683-718.
[15] JIN H C,LIN G P,BAI L Z,et al. Steam generation in a nanoparticle-based solar receiver [J]. Nano Energy,2016,28:397-406.
[16] WANG Z H, LIU Y M, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface [J]. Small,2014,10(16):3234-3239.
[17] ALVAREZ P J J, CHAN C K, ELIMELECH M,et al. Emerging opportunities for nanotechnology to enhance water security [J]. Nature Nanotechnology,2018,13(8):634-641.
[18] ZHU L L,GAO M M,PEH C K N, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation [J]. Advanced Energy Materials,2018,8(16):1702149:1-8.
[19] SHI Y,ZHANG C L,LI R Y,et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination [J]. Environmental Science & Technology,2018,52(20):11822-11830.
[20] YANG X D,YANG Y B,FU L N,et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation [J]. Advanced Functional Materials,2018,28(3):1704505:1-9.
[21] YANG Y W,ZHAO H Y,YIN Z Y,et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation [J]. Materials Horizons,2018,5(6):1143-1150.
[22] NI G,LI G,BORISKINA S V,et al. Steam generation under one sun enabled by a floating structure with thermal concentration [J]. Nature Energy,2016,1(9):16126:1-7.
[23] HU X Z,ZHU J. Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation [J]. Advanced Functional Materials,2020,30(3):1907234:1-17.
[24] WANG J,LI Y Y,DENG L,et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles [J]. Advanced Materials,2017,29(3):1603730:1-6.
[25] DING T P,ZHOU Y,ONG W L,et al. Hybrid solar-driven interfacial evaporation systems:beyond water production towards high solar energy utilization [J]. Materials Today,2021,42:178-191.
[26] DAO V D,VU N H,YUN S N. Recent advances and challenges for solar-driven water evaporation system toward applications [J]. Nano Energy,2020,68:104324:1-18.
[27] ZHOU L,TAN Y L,JI D X,et al. Self-assembly of highly efficient,broadband plasmonic absorbers for solar steam generation [J]. Science Advances,2016,2(4):e1501227:1-8.
[28] 李习标,关昌峰,阎华,等.碳基材料光热水蒸发研究进展[J].化工新型材料,2021,49(8):21-27.
[29] PAPAGEORGIOU D G,KINLOCH I A,YOUNG R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Progress in Materials Science,2017,90:75-127.
[30] GEORGAKILAS V, PERMAN J A,TUCEK J,et al. Broad family of carbon nanoallotropes:classification,chemistry,and applications of fullerenes,carbon dots,nanotubes,graphene,nanodiamonds,and combined superstructures [J]. Chemical Reviews,2015,115(11):4744-4822.
[31] FAN Y K, TIAN Z Y,WANG F, et al. Enhanced solar-to-heat efficiency of photothermal materials containing an additional light-reflection layer for solar-driven interfacial water evaporation [J]. ACS Applied Energy Materials,2021,4(3):2932-2943.
[32] 谢歆雯. 多孔碳纳米管基复合膜用于海水淡化研究[D]. 厦门:厦门大学,2020.
[33] LI L X,LI Q W,FENG Y G,et al. Melamine/silicone hybrid sponges with controllable microstructure and wettability for efficient solar-driven interfacial desalination[J]. ACS Applied Materials & Interfaces,2022,14(1):2360-2368.
[34] XU K Y,WANG C B,LI Z T,et al. Architecting a Janus biomass carbon/sponge evaporator with salt-rejection and ease of floatation for sustainable solar-driven desalination [J]. Environmental Science:Water Research & Technology,2021,7(5):879-885.
[35] 胥敬维.聚合物光热膜界面性质调控及其太阳能光热蒸汽转化性能[D].武汉:华中科技大学,2020.
[36] LI C W,JIANG D G,HUO B B,et al. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination [J].Nano Energy,2019,60:841-849.
[37] CHEN J X, LI B, HU G X, et al. Integrated evaporator for efficient solar-driven interfacial steam generation [J]. Nano Letters,2020,20(8):6051-6058.
[38] MARGESON M J, DASOG M. Plasmonic metal nitrides for solar-driven water evaporation [J]. Environmental Science:Water Research & Technology,2020,6(12):3169-3177.
[39] 赵思琪.Cu/石墨烯气凝胶的制备及其光热海水淡化特性研究[D]. 哈尔滨:哈尔滨工业大学,2021.
[40] PAN J F,YU X H,DONG J J,et al. Diatom-inspired TiO2-PANi-decorated bilayer photothermal foam for solar-driven clean water generation [J]. ACS Applied Materials & Interfaces,2021,13(48):58124-58133.
[41] LI R Y, ZHANG L B, SHI L, et al. MXene Ti3C2:an effective 2D light-to-heat conversion material [J]. ACS Nano,2017,11(4):3752-3759.
[42] LIN P C,XIE J J,HE Y D,et al. MXene aerogel-based phase change materials toward solar energy conversion [J]. Solar Energy Materials and Solar Cells,2020,206:110229:1-10.
[43] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene:synthesis,characterization,and potential application as surface-enhanced Raman scattering substrate [J]. ACS Nano,2017,11(9):8892-8900.
[44] SHAHZAD F,ALHABEB M,HATTER C B,et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science,2016,353(6304):1137-1140.
[45] ZHAO X,ZHA X J,PU J H,et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation [J]. Journal of Materials Chemistry A,2019,7(17):10446-10455.
[46] WANG M K,ZHU J,ZI Y,et al. 3D MXene sponge:facile synthesis,excellent hydrophobicity,and high photothermal efficiency for waste oil collection and purification [J]. ACS Applied Materials & Interfaces,2021,13(39):47302-47312.