[2] 刘丹阳,王升高,马元,等. 泡沫碳@SnO2复合材料的制备及电化学性能[J]. 武汉工程大学学报,2020,42(3):307-311.
[3] 袁华,何云蔚,艾常春. 钛酸锂作为锂离子电池负极材料的改性进展[J]. 武汉工程大学学报,2014,36(8):20-26.
[4] LIU S J, CHENG S K, XIE M, et al. A delicately designed functional binder enabling in situ construction of 3D cross-linking robust network for high-performance Si/graphite composite anode [J]. Journal of Polymer Science,2022,60(12):1835-1844.
[5] YANG J,TAKEDA Y,IMANISHI N,et al. SiOx-based anodes for secondary lithium batteries [J]. Solid State Ionics,2002,152/153:125-129.
[6] WU S X,YANG Y J ,LIU C B, et al. In-situ polymerized binder:a three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries [J]. ACS Energy Letters,2021,6(1):290-297.
[7] LI G,LI J Y,YUE F S,et al. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries [J]. Nano Energy,2019,60:485-492.
[8] YAO N N,ZHANG Y,RAO X H,et al. A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries [J]. International Journal of Minerals,Metallurgy and Materials,2022,29(4):876-895.
[9] TIAN H, TIAN H J,YANG W,et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries [J]. Advanced Functional Materials,2021,31(25):2101796:1-14.
[10] XU Q, SUN J K, YIN Y X, et al. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes [J]. Advanced Functional Materials,2018,28(8):1705235:1-7.
[11] ZHANG Q,ZHANG F Y,ZHANG M,et al. A highly efficient silicone-modified polyamide acid binder for silicon-based anode in lithium-ion batteries [J]. ACS Applied Energy Materials,2021,4(7):7209-7218.
[12] HU L L,ZHANG X D,ZHAO P Y,et al. Gradient H-bonding binder enables stable high-areal-capacity Si-based anodes in pouch cells [J].Advanced Materials,2021,33(52):2104416:1-9.
[13] XU Y H,YIN G P,MA Y L,et al. Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder [J]. Journal of Power Sources,2010,195(7):2069-2073.
[14] GONG L Y,NGUYEN M H T,OH E S. High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries [J]. Electrochemistry Communications,2013,29:45-47.
[15] WENG Z, DI S H, CHEN L, et al. Random copolymer hydrogel as elastic binder for the SiOx microparticle anode in lithium-ion batteries [J]. ACS Applied Materials & Interfaces,2022,14(37):42494- 42503.
[16] CHEN H, LING M, HENCZ L, et al. Exploring chemical,mechanical,and electrical functionalities of binders for advanced energy-storage devices [J]. Chemical Reviews,2018,118(18):8936-8982.
[17] LI Z H,TANG W T,YANG Y J,et al. Engineering prelithiation of polyacrylic acid binder:a universal strategy to boost initial coulombic efficiency for high-areal-capacity Si-based anodes [J]. Advanced Functional Materials,2022,32(40):2206615:1-13.
[18] BRESSER D,BUCHHOLZ D, MORETTI A,et al. Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers [J]. Energy & Environmental Science,2018,11(11):3096-3127.
[19] KOVALENKO I, ZDYRKO B, MAGASINSKI A,et al. A major constituent of brown algae for use in high-capacity Li-ion batteries [J]. Science,2011,334(6052):75-79.
[20] LEE S H, LEE J H, NAM D H, et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery [J]. ACS Applied Materials & Interfaces,2018,10(19):16449-16457.
[21] KAUR S,SANTRA S. Application of guar gum and its derivatives as green binder/separator for advanced lithium-ion batteries [J]. Chemistry Open,2022,11(2):e202100209:1-14.
[22] SONG J X,ZHOU M J,YI R,et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries [J]. Advanced Functional Materials,2014,24(37):5904-5910.
[23] WU Z Y,DENG L,LI J T,et al. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery [J]. Electrochimica Acta,2017,245:371-378.
[24] LUO C,WU X F,ZHANG T,et al. A four-armed polyacrylic acid homopolymer binder with enhanced performance for SiOx/graphite anode [J]. Macromolecular Materials and Engineering,2021,306(1):2000525:1-8.
[25] JIAO X X,YIN J Q,XU X Y,et al. Highly energy-dissipative,fast self-healing binder for stable Si anode in lithium-ion batteries [J]. Advanced Functional Materials,2021,31(3):2005699:1-7.
[26] ASSRESAHEGN B D,BéLANGER D. Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives [J]. Journal of Power Sources,2017,345:190-201.
[27] LIU D,ZHAO Y,TAN R,et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries [J]. Nano Energy,2017,36:206-212.
[28] 李杨,张娜. 动力锂离子电池循环后的性能分析[J]. 电池,2016,46(1):28-30.
[29] YANG X L,WEN Z Y,XU X X,et al. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries [J]. Journal of Power Sources,2007,164(2):880-884.
[30] LI Z H,WAN Z W,WU G,et al. A biopolymer network for lean binder in silicon nanoparticle anodes for lithium-ion batteries [J]. Sustainable Materials and Technologies,2021,30:e00333:1-8.