|本期目录/Table of Contents|

[1]彭 聪,李万乔,李立仁,等.基于纹理特征提取的多聚焦图像融合方法[J].武汉工程大学学报,2024,46(02):197-202.[doi:10.19843/j.cnki.CN42-1779/TQ.202308011]
 PENG Cong,LI Wanqiao,LI Liren,et al.Multi-focus image fusion method based on texture features extraction[J].Journal of Wuhan Institute of Technology,2024,46(02):197-202.[doi:10.19843/j.cnki.CN42-1779/TQ.202308011]
点击复制

基于纹理特征提取的多聚焦图像融合方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年02期
页码:
197-202
栏目:
机电与信息工程
出版日期:
2024-04-28

文章信息/Info

Title:
Multi-focus image fusion method based on texture features extraction
文章编号:
1674 - 2869(2024)02 - 0197 - 06
作者:
彭 聪1李万乔1李立仁1焦永鑫2刘晓华*2
1. 武汉工程大学机电工程学院,湖北 武汉 430205;
2. 武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
PENG Cong1 LI Wanqiao1 LI Liren1 JIAO Yongxin2 LIU Xiaohua*2
1. School of Mechanical & Electrical Engineering,Wuhan Institute of Technology, Wuhan 430205, China;
2. School of Computer Science and Engineering,Wuhan Institute of Technology, Wuhan 430205, China
关键词:
多聚焦图像融合纹理特征提取特征增强引导滤波
Keywords:
multi-focus image fusion textural features extraction feature enhancement guided filter
分类号:
TP39
DOI:
10.19843/j.cnki.CN42-1779/TQ.202308011
文献标志码:
A
摘要:
针对多聚焦图像融合过程中可能出现的问题,如细节丢失、边缘伪影和区块效应等,提出了一种基于纹理特征提取的多聚焦图像融合方法。通过纹理特征提取算法获取图像纹理细节,用引导滤波对细节进行增强和细化处理。对滤波后特征图采用像素极大值策略生成初始决策图,利用小区域去噪方法得到准确的决策图。结合原始图像与最终决策图进行图像融合,生成全聚焦图像。结果表明,该方法融合的图像质量有显著提升,与其他方法相比,均方误差评价值降低了约37.14%,同时,基于归一化互信息度量、基于Tsallis熵度量和基于非线性相关信息熵度量的评价参数值分别提升了约26.1%、6.18%和13.2%。此外,该方法还可以充分保留图像细节信息且没有区块效应和边缘模糊的现象,具有较强的实际应用价值。

Abstract:
To address the challenges associated with multi-focus image fusion, such as detail loss, edge artifacts, and block effects, we proposed a texture feature extraction-based method for multi-focus image fusion. The texture details were extracted from the image using a texture feature extraction algorithm, followed by enhancement and refinement through guided filtering. The initial decision map was first generated using a pixel maximum strategy on a filtered feature image, and then was refined to get a final decision map using a small region denoising method. Finally, a fully focused image was obtained by fusing the original image and the final decision map. The results show this method significantly improves the quality of the fused images. Compared with other methods, it reduces the mean square error evaluation value by about 37.14%, meanwhile the evaluation parameter values based on normalized mutual information metric, Tsallis entropy metric, and nonlinear correlation information entropy metric increase by about 26.1%, 6.18%, and 13.2%, respectively. In addition, the method fully preserves image detail information without block effects or edge blur, which shows its significance in practical applications.

参考文献/References:

[1] LI S T, KANG X D, FANG L Y, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112.

[2] FUNG K T, SIU W C. Diversity and importance measures for video downscaling[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway:IEEE,2005:1061-1064.
[3] BURT P J, ADELSON E H. The Laplacian pyramid as a compact image code[M]. San Francisco: Morgan Kaufmann Publishers Inc. , 1987.
[4] TIAN J, CHEN L. Adaptive multi-focus image fusion using a wavelet-based statistical sharpness measure[J]. Signal Processing, 2012, 92(9): 2137-2146.
[5] ZHANG Q, GUO B L. Research on image fusion based on the nonsubsampled contourlet transform[C]// 2007 IEEE International Conference on Control and Automation. Piscataway: IEEE, 2007: 3239-3243.
[6] YANG Y, TONG S, HUANG S Y, et al. Multifocus image fusion based on NSCT and focused area detection[J]. IEEE Sensors Journal, 2015, 15(5): 2824-2838.
[7] UPLA K P, JOSHI M V, GAJJAR P P. An edge preserving multiresolution fusion: use of contourlet transform and MRF prior[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3210-3220.
[8] LIU Y, WANG L, CHENG J, et al. Multi-focus image fusion: a survey of the state of the art[J]. Information Fusion, 2020, 64: 71-91.
[9] HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
[10] LI S T, KANG X D, HU J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
[11] ZHAN K, TENG J C, LI Q Q, et al. A novel explicit multi-focus image fusion method[J]. Journal of Information Hiding and Multimedia Signal Processing, 2015, 6(3): 600-612.
[12] ZHOU F Q, LI X S, LI J, et al. Multifocus image fusion based on fast guided filter and focus pixels detection[J]. IEEE Access, 2019, 7: 50780-50796.
[13] QIU X H, LI M, ZHANG L Q, et al. Guided filter-based multi-focus image fusion through focus region detection[J]. Signal Processing: Image Communica-tion, 2019, 72: 35-46.
[14] 杜伟,何毅斌,吴林慧,等. 融合改进形态学和LOG算子的齿轮边缘检测[J]. 武汉工程大学学报,2021,43(6):675-680.
[15] OJALA T, PIETIK?INEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.
[16] LI S T, KANG X D, HU J W, et al. Image matting for fusion of multi-focus images in dynamic scenes[J]. Information Fusion, 2013, 14(2): 147-162.
[17] LIU S M, CHEN J J, RAHARDJA S. A new multi-focus image fusion algorithm and its efficient implementation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(5): 1374-1384.
[18] 王磊,齐争争,刘羽. 深度学习多聚焦图像融合方法综述[J]. 中国图象图形学报,2023,28(1):80-101.
[19] LIU Z, BLASCH E, XUE Z Y, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 94-109.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-08-16
基金项目:国家自然科学基金(62171329)
作者简介:彭 聪,硕士研究生。Email:[email protected]
*通信作者:刘晓华,硕士,副教授。Email:[email protected]
引文格式:彭聪,李万乔,李立仁,等. 基于纹理特征提取的多聚焦图像融合方法[J]. 武汉工程大学学报,2024,46(2):197-202.

更新日期/Last Update: 2024-05-01