[2] 陈立挺,聂晓根.基于双目视觉的机械手识别、定位、抓取系统研究[J].机电工程,2019,36(8):862-866,872.
[3] 张苏沛,刘军,肖澳文,等.基于卷积神经网络的验证码识别[J].武汉工程大学学报,2019,41(1):89-92.
[4] 陈希彤,卢涛.基于全局深度分离卷积残差网络的高效人脸识别算法[J].武汉工程大学学报,2019,41(3):276-282.
[5] HU Y L,HUGONOT J,FUA P,et al. Segmentation-driven 6D object pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:3385-3394.
[6] LI Y,WANG G,JI X Y,et al. DeepIM:deep iterative matching for 6D pose estimation[J].International Journal of Computer Vision,2020,128(7):657-678.
[7] PENG S, LIU Y, HUANG Q X,et al. PVNet:pixel-wise voting network for 6DoF pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:4561-4570.
[8] LEPETIT V,MORENO-NOGUER F,FUA P. EPnP:an accurate o(n) solution to the PnP problem[J]. International Journal of Computer Vision,2009,81(2):155-166.
[9] PARK K, PATTEN T, VINCZE M. Pix2Pose:pixel-wise coordinate regression of objects for 6D pose estimation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:7668-7677.
[10] 李少飞,史泽林,庄春刚.基于深度学习的物体点云六维位姿估计方法[J].计算机工程,2021,47(8):216-223.
[11] FAN R Z,XU T B,WEI?Z Z.Estimating 6D aircraft pose from keypoints and structures[J].Remote Sensing,2021,13(4):663.
[12] YANG X L,JIA X H,LIANG Y,et al. 6D object pose estimation in cluttered scenes from RGB images[J].Journal of Computer Science and Technology,2022,37(3):719-730.
[13] 王太勇,孙浩文.基于关键点特征融合的六自由度位姿估计方法[J].天津大学学报(自然科学与工程技术版),2022,55(5):543-551.
[14] HAUGAARD R L,BUCH A G. Surfemb:dense and continuous correspondence distributions for object pose estimation with learnt surface embeddings[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2022:6749-6758.
[15] LIU S Q,WEI J S,LIU G,et al.?Image classification model based on large kernel attention mechanism and relative position self-attention mechanism[J].?PeerJ Computer Science,2023,9:e1344.
[16] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Switzerland:Springer,2015:234-241.