[2] MANIYAR F H, SPRENGER T, SCHANKIN C, et al. The origin of nausea in migraine-a PET study[J]. The Journal of Headache and Pain, 2014, 15:84.
[3] ZALAQUETT N G, SALAMEH E, KIM J M, et al. The dawn and advancement of the knowledge of the genetics of migraine[J]. Journal of Clinical Medicine, 2024, 13(9): 2701.
[4] SEIDEL S, BEISTEINER R, MANECKE M, et al. Psychiatric comorbidities and photophobia in patients with migraine[J]. The Journal of Headache and Pain, 2017, 18:18.
[5] LLOP S M, FRANDSEN J E, DIGRE K B, et al. Increased prevalence of depression and anxiety in patients with migraine and interictal photophobia[J]. The Journal of Headache and Pain, 2016, 17:34.
[6] STEINER T J, STOVNER L J. Global epidemiology of migraine and its implications for public health and health policy[J]. Nature Reviews Neurology, 2023, 19:109-117.
[7] PEHLIVANLAR E, CARRADORI S, SIMSEK R. Migraine and its treatment from the medicinal chemistry perspective[J]. ACS Pharmacology & Translational Science, 2024, 7:951-966.
[8] FERRARI M D, GOADSBY P J, BURSTEIN R, et al. Migraine[J]. Nature Reviews Disease Primers, 2022, 8:2.
[9] ALABBAD S, FIGUEREDO N, YUAN H, et al. Developments in targeting calcitonin gene-related peptide[J]. Expert Review of Neurotherapeutics, 2024, 24(5): 477-485.
[10] CHARLES A, POZO-ROSICH P. Targeting calcitonin gene-related peptide: a new era in migraine therapy[J]. The Lancet, 2019, 394: 1765-1774.
[11] 李雪, 戚微岩, 徐寒梅, 等. 降钙素基因相关肽在偏头痛中的作用及其靶向药物的研究进展[J]. 药学进展, 2024, 48(2):151-160.
[12] OLESEN J, ASHINA M. Calcitonin gene-related peptide—beyond migraine prophylaxis[J]. Nature Reviews. Neurology, 2019, 15: 562-564.
[13] MAASSENVANDENBRINK A, TERWINDT G M, VAN DEN MAAGDENBERG A M J M. Calcitonin gene-related peptide (receptor) antibodies: an exciting avenue for migraine treatment[J]. Genome Medicine, 2018, 10: 10.
[14] AL-KHAZALI H M, ASHINA H, WIGGERS A, et al. Calcitonin gene-related peptide causes migraine aura[J]. The Journal of Headache and Pain, 2023, 24: 124.
[15] DOS SANTOS J B R, DA SILVA M R R. Small molecule CGRP receptor antagonists for the preventive treatment of migraine: a review[J]. European Journal of Pharmacology,2022,922:174902.
[16] HOLLAND P R, GOADSBY P J. Targeted CGRP small molecule antagonists for acute migraine therapy[J]. Neurotherapeutics, 2018, 15: 304-312.
[17] MULDER I A, LI M, DE VRIES T, et al. Anti-migraine calcitonin gene-related peptide receptor antagonists worsen cerebral ischemic outcome in mice[J]. Annals of Neurology, 2020, 88: 771-784.
[18] GARELJA M L, WALKER C S, HAY D L. CGRP receptor antagonists for migraine. Are they also AMY1 receptor antagonists?[J]. British Journal of Pharmacology, 2022, 179: 454-459.
[19] SCUTERI D, TONIN P, NICOTERA P, et al. Real world considerations for newly approved CGRP receptor antagonists in migraine care[J]. Expert Review of Neurotherapeutics, 2022,22(3):221-230.
[20] WALKER C S, RADDANT A C, WOOLLEY M J, et al. CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured[J]. Cephalalgia, 2018, 38(3): 437-451.
[21] OLESEN J, DIENER H C, HUSSTEDT I W, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine[J]. New England Journal of Medicine, 2004, 350 (11): 1104-1110.
[22] HOPKINS C R. ACS chemical neuroscience molecule spotlight on telcagepant (MK-0974)[J]. ACS Chemical Neuroscience, 2011, 2(7): 334-335.
[23] BURGEY C S, PAONE D V, SHAW A W, et al. Synthesis of the (3R,6S)-3-amino-6-(2,3-difluorophenyl) azepan-2-one of telcagepant (MK-0974), a calcitonin gene-related peptide receptor antagonist for the treatment of migraine headache[J]. Organic Letters, 2008, 10(15): 3235-3238.
[24] BELL I M, GALLICCHIO S N, WOOD M R, et al. Discovery of MK-3207: a highly potent, orally bioavailable CGRP receptor antagonist[J]. ACS Medicinal Chemistry Letters, 2010,1: 24-29.
[25] SALVATORE C A, MOORE E L, CALAMARI A, et al. Pharmacological properties of MK-3207, a potent and orally active calcitonin gene-related peptide receptor antagonist[J]. Journal of Pharmacology and Experimental Therapeutics, 2010. 333(1): 152-160.
[26] DE V T, VILLALóN C M, MAASSENVAND-ENBRINK A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans[J]. Pharmacology & Therapeutics, 2020, 211:107528.
[27] US Food and Drug Administration. FDA approves new treatment for adults with migraine[EB/OL].(2019-12-23)[2024-06-05].https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-adults-migraine.
[28] SCOTT L J. Ubrogepant: first approval[J]. Drugs, 2020, 80(3): 323-328.
[29] DODICK D W, LIPTON R B, AILANI J, et al. Ubrogepant for the treatment of migraine[J]. New England Journal of Medicine, 2019, 381:2230-2241.
[30] ABRAMOWICZ M, ZUCCOTTI G, PFLOMM J M. Rimegepant (nurtec ODT) for acute treatment of migraine [J]. Jama-Journal of the American Medical Association, 2020, 324(9): 890-891.
[31] SCOTT L J. Rimegepant: first approval[J]. Drugs, 2020, 80(7): 741-746.
[32] AILANI J, LIPTON R B, GOADSBY P J, et al. Atogepant for the preventive treatment of migraine[J]. New England Journal of Medicine, 2021, 385(8): 695-706.
[33] HAY D L, WALKER C S, HARRIS P W R. Atogepant (Qulipta?) for migraine prevention[J]. Trends in Pharmacological Sciences, 2022, 43(8): 701-702.
[34] 薛宝玉, 关奇. Atogepant (Qulipta)[J]. 中国药物化学志, 2022, 32(7): 578.
[35] DEEKS E D. Atogepant: first approval[J]. Drugs, 2022, 82 (1): 65-70.
[36] BELL I M, FRALEY M E, STEVEN N G, et al. Piperidinone carboxamide azaindane CGRP receptor antagonists: US20120122899[P]. 2012-03-17.
[37] FRANK C, CARMELA M, WUELFING W P, et al. Process for making CGRP receptor antagonists:US20160130273[P]. 2016-03-12.
[38] EVANS D A, KALDOR S W, JONES T K, et al. Total synthesis of the macrolide antibiotic cytovaricin[J]. Journal of the American Chemical Society, 1990, 112(19): 7001-7031.
[39] FRANK C, CARMELA M, WUELFING W P, et al. Process for making CGRP receptor antagonists:WO2013169348[P]. 2013-11-14.
[40] BELL I M, FRALEY M E, STEVEN N G, et al. Piperidinone carboxamide azaindane CGRP receptor antagonists:US2021000855[P]. 2021-02-14
[41] WOOD M R, BELL I M, GALLICCHIO S N, et al. Substituted spirocyclic CGRP receptor antagonists. WO2008020902[P]. 2008-02-21.
[42] 李陈宗, 朱园园, 古双喜. 手性药物及其中间体光学纯度的测定方法与应用[J]. 分析试验室, 2022, 41(5):588-599.
[43] 葛锐, 朱园园, 王海峰, 等. 手性化合物绝对构型确定的方法与应用[J]. 有机化学, 2022, 42(2): 424-433.
[44] 尚胜捷, 王璨, 陈云峰. 抗病毒药物中间体替诺福韦的合成工艺研究[J]. 武汉工程大学学报,2022, 44(6):619-623,663.
[45] WALSH P J, LI H, DE PARRODI C A. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions[J]. Chemical Reviews, 2007, 107(6): 2503-2545.
[46] PU L. Regioselective substitution of BINOL[J]. Chemical Reviews,2024, 124: 6643-6689.
[47] MOVSISYAN M, DELBEKE E I P, BERTON J, et al. Taming hazardous chemistry by continuous flow technology[J]. Chemical Society Reviews, 2016, 45(18): 4892-4928.
[48] 刘玎, 朱园园, 古双喜, 等. 流动化学在卤化反应中的应用[J]. 有机化学, 2021, 41(3): 1002-1011.
[49] 赵晨熙, 王池, 董江湖, 等. β-内酰胺酶抑制剂关键中间体的微通道技术合成[J]. 武汉工程大学学报, 2024, 46(1): 7-11.
[50] 杨昭, 祝宏, 曾祥聪, 等. 美乐托宁微反应合成系统的开发[J]. 武汉工程大学学报, 2018, 40(3): 259-262.
[51] 冯康博, 陈炯, 古双喜, 等. 全连续流反应技术在药物合成中的新进展(2019—2022)[J]. 有机化学, 2024, 44(2): 378-397.