|本期目录/Table of Contents|

[1]胡元文,徐 智,刘生鹏,等.新型磷系阻燃剂的合成及应用研究进展[J].武汉工程大学学报,2024,46(05):473-481.[doi:10.19843/j.cnki.CN42-1779/TQ.202307012]
 HU Yuanwen,XU Zhi,LIU Shengpeng,et al.Progress in synthesis and application of new phosphorus flame retardants[J].Journal of Wuhan Institute of Technology,2024,46(05):473-481.[doi:10.19843/j.cnki.CN42-1779/TQ.202307012]
点击复制

新型磷系阻燃剂的合成及应用研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年05期
页码:
473-481
栏目:
化学与化学工程
出版日期:
2024-10-28

文章信息/Info

Title:
Progress in synthesis and application of new phosphorus flame retardants
文章编号:
1674 - 2869(2024)05 - 0473 - 09
作者:
胡元文1徐 智1刘生鹏1熊 芸1吴晓宇1樊庆春1丁一刚1许莉莉*2
1. 武汉工程大学化工与制药学院,湖北 武汉 430205;
2. 武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
HU Yuanwen1 XU Zhi1 LIU Shengpeng1 XIONG Yun1 WU Xiaoyu1 FAN Qingchun1
1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;
2. School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
磷系阻燃剂改性阻燃性能进展
Keywords:
phosphorous flame retardant modification flame-retarding property progress
分类号:
TQ314.248
DOI:
10.19843/j.cnki.CN42-1779/TQ.202307012
文献标志码:
A
摘要:
随着高分子材料广泛应用于电气、建筑、医疗、食品包装等领域,其阻燃性能研究也自然受到了国内外学者的关注。有机磷系阻燃剂具有低烟、无毒、低卤、无卤等优点,是阻燃剂未来的发展方向。综述以苯膦酰二氯、六氯环三磷腈和9,10-二氢-9-氧杂-10-磷杂菲三种关键化合物,与羟基、氨基等活泼的端基基团发生反应所制备的一系列新型磷系阻燃剂及其阻燃性能的研究,并对磷系阻燃剂现阶段所遇见的问题进行了总结。在未来研究过程中,可从两方面着手提高磷系阻燃剂工业化程度:一是开发新的阻燃性能更好、相容性更好的磷系阻燃剂;二是利用现有磷系阻燃剂与含有极性基团的高分子材料混合,提高磷系阻燃剂与高分子材料的相容性,从而提高阻燃性能。
Abstract:
As polymer materials are widely used in the fields of electrics, construction, pharmaceuticals, food packaging and so on, the research on their flame retardation has attracted the attention of scholars at home and abroad. Organophosphorus-based flame retardants have the advantages of low smoke, non-toxic, low halogen or halogen-free, and they are the future development direction of flame retardants. This paper reviews the research on a series of new phosphorus flame retardants and their flame-retardation properties prepared by reacting three key compounds, namely, phenylphosphonic dichloride, hexachlorocyclotriphosphazene, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene with compounds posscssing active end groups such as hydroxyl and amino groups, and summarizes the problems of phosphorus flame retardants at the present stage. The future research can start from two aspects to improve the scale of industrial production of phosphorus flame retardants. One is to develop new phosphorus flame retardants with better flame-retardation properties and better compatibility; the other is to use the existing phosphorus flame retardants to mix with polymer materials containing polar groups to improve the compatibility of phosphorus flame retardants with polymer materials, thereby improving the flame-retarding properties.

参考文献/References:

[1] 祝亮, 舒亦婷, 彭永利. 聚醚胺原位增韧环氧/酸酐体系的研究[J]. 武汉工程大学学报,2022,44(4):417-421.

[2] 钱立军. 现代阻燃材料与技术[M]. 北京: 化学工业出版社, 2021.
[3] 张权, 董广峰, 马鸣杨, 等. 碱式氯化镁晶须的制备及其生长机理研究[J]. 武汉工程大学学报, 2023,45(3): 256-261.
[4] 字春光, 苏友波, 包立, 等. 我国磷石膏资源化利用现状及对策建议[J]. 安徽农业科学, 2018,46(5): 73-76.
[5] VELENCOSO M M, BATTIG A, MARKWART J C, et al. Molekulare Brandbek?mpfung-mie moderne Phosphorchemie sur L?sung der Flammschutzaufgabe beitragen mann[J]. Angewandte Chemie, 2018,130(33): 10608-10626.
[6] XU F, ZHANG G X, WANG P, et al. A novel ε-polylysine-derived durable phosphorus‐nitrogen‐based flame retardant for cotton fabrics[J]. Cellulose, 2021,28(6): 3807-3822.
[7] WANG X Y, WANG J M, ZHAO W, et al. Effects of flame retardants containing P-O-C and P-C structures on the flame retardant properties of epoxy resin[J]. Polymers for Advanced Technologies, 2023,34(3): 1046-1058.
[8] LIU J, DONG C H, ZHANG Z, et al. Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer[J]. Cellulose, 2020,27(6): 3531-3549.
[9] 宋远超,陈国文,姚慧玲,等. 硅系阻燃剂作用机理及应用进展[J]. 有机硅材料,2018,32(6): 496-500.
[10] QIU S, WANG X, YU B, et al. Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins[J]. Journal of Hazardous Materials,2017,325: 327-339.
[11] HAMCIUC C,VLAD BUBULAC T,SERBEZEANU D, et al. Eco‐friendly flame retardant epoxy nanocomposites based on polyphosphonate and halloysite nanotubes[J]. Journal of Vinyl and Additive Technology, 2023,29(1): 29-40.
[12] LIU H, DU Y, LEI S H, et al. Flame-retardant activity of modified boron nitride nanosheets to cotton[J]. Textile Research Journal,2020,90(5/6):512-522.
[13] 郝聃, 王锐, 王文庆. 硼系阻燃剂在高聚物阻燃中的应用研究进展[J]. 高分子材料科学与工程, 2021,37(5): 115-123.
[14] 朱丽君, 陈金芳. 有机磷系阻燃剂文献计量学分析[J]. 武汉工程大学学报, 2012,34(7): 75-78.
[15] 刘晓双. 磷系阻燃剂的应用及研究进展[J]. 山东化工, 2022,51(13): 83-84, 88.
[16] 刘仿军, 武菊, 李亮, 等. 六苯氧基环三磷腈的合成及其阻燃应用[J]. 武汉工程大学学报, 2013,35(4): 48-51.
[17] 王承慧, 张英强, 杨晨熙, 等. 含DOPO阻燃环氧树脂的研究进展[J]. 应用技术学报, 2022,22(4): 321-325, 352.
[18] MA T T, LI L P, MEI C T, et al. Synthesis of a vanillin‐based curing agent and its application in wood to improve dimensional stability and flame retardancy[J]. Polymers for Advanced Technologies, 2022,33(10): 3249-3262.
[19] JING J, ZHANG Y, TANG X L, et al. Synthesis of a highly efficient phosphorus-containing flame retardant utilizing plant-derived diphenolic acids and its application in polyactic acid[J]. RSC Advances, 2016,6(54): 49019-49027.
[20] HU X, WANG B T, GUO Z H, et al. Roles of phosphoramide derivatives in flame retardancy, thermal degradation and crystallization behaviors of polyactic acid[J]. International Journal of Biological Macromolecules, 2022,219: 558-570.
[21] ZHU Z M, WANG L X, DONG L P. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin[J]. Polymer Degradation and Stability, 2019,162: 129-137.
[22] ARORA S, MESTRY S, NAIK D, et al. O-phenylenediamine-derived phosphorus-based cyclic flame retardant for epoxy and polyurethane systems[J]. Polymer Bulletin, 2020,77(6): 3185-3205.
[23] JIANG J W, GUO R F, SHEN H F, et al. Phosphine oxide for reducing flammability of ethylene-vinyl-acetate copolymer[J]. e-Polymers, 2021,21(1): 299-308.
[24] LUBCZAK J, LUBCZAK R. Oligoetherols and polyurethane foams based on acyclotriphosphazene of reduced flammability[J]. Macromolecular Research, 2023,31(5): 455-468.
[25] DAGDAG O, BACHIRI A E, HAMED O, et al. Dendrimeric epoxy resins based on hexachlorocyclotriphosphazene as a reactive flame retardant polymeric materials: a review[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021,31(8): 3240-3261.
[26] AFSHARI M, DINARI M. Improving the reaction-to-fire properties of thermoplastic polyurethane by new phosphazene-triazinyl-based covalent organic framework[J]. ACS Applied Materials & Interfaces, 2022,14(43): 49003-49013.
[27] VEDACHALAM S, SEKAR P, NITHYA C, et al. Dopant-free main group elements supported covalent organic-inorganic hybrid conducting polymer for sodium-ion battery application[J]. ACS Applied Energy Materials, 2022,5(1): 557-566.
[28] KANG H, BUI T T, YUN B, et al. Phosphazene based LATP precursor for a CEI coating layer on high voltage LiNi0.5Mn1.5O4 cathode with improved cycling durability[J]. Materials Chemistry and Physics, 2022,290: 126492.
[29] PIRI M, HERAVI M M, ELHAMPOUR A, et al. Silver nanoparticles supported on P, Se-cooped g-C3N4 nanosheet as a novel heterogeneous catalyst for reduction of nitroaromatics to their corresponding amines[J]. Journal of Molecular Structure, 2021,1242: 130646.
[30] YU H L, TIAN L, ZHU Y X, et al. Effect of cyclophosphazene nucleated hyperbranched polyester on flame retardancy and mechanical properties of epoxy resins[J]. Journal of Applied Polymer Science, 2022,139(25):e52404.
[31] WANG C H, HU F, YANG K J, et al. Synthesis and properties of star-branched nylon 6 with hexafunctional acyclotriphosphazene core[J]. RSC Advances, 2015,5(107): 88382-88391.
[32] ZHANG S, LI Y C, GUO J, et al. Preparation of hexakis (4‐aldehyde phenoxy) acyclotriphosphazene grafted kaolinite and its synergistic fire resistance in poly (butylene succinate)[J]. Polymer Composites, 2019,41(3): 1024-1035.
[33] LIU H, WANG X D, WU D Z. Preparation, isothermal kinetics, and performance of a novel epoxy thermosetting system based on phosphazene-cyclomatrix network for halogen-free flame retardancy and high thermal stability[J]. Thermochimica Acta, 2015,607: 60-73.
[34] CHENG J W, WANG J, YANG S, et al. Aminobenzothiazole-substituted acyclotriphospha-zene derivative as reactive flame retardant for epoxy resin[J]. Reactive and Functional Polymers, 2020,146: 104412.
[35] CHENG J W, WANG J, YANG S, et al. Benzimidazolyl-substituted acyclotriphosphazene derivative as latent flame-retardant curing agent for one-component epoxy resin system with excellent comprehensive performance[J]. Composites Part B: Engineering, 2019,177: 107440.
[36] LIU H, WANG X D, WU D Z. Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: synthesis, curing behaviors, and flame retardancy[J]. Polymer Degradation and Stability, 2014,103: 96-112.
[37] LIANG W J, ZHAO B, ZHAO P H, et al. Bisphenol-S bridged penta(anilino)acyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability, 2017,135: 140-151.
[38] TAN W, REN Y L, GUO Y B, et al. A novel multi-claw reactive flame retardant derived from DOPO for endowing lyocell fabric with high effective flame retardancy [J]. Cellulose, 2022,29(12): 6941-6962.
[39] HU R, HE K B, ZHENG X H, et al. Preparation and properties of flame retardant epoxy resin modified by additive nitrogen-containing POSS-based molecule with eight DOPO units[J]. Journal of Polymer Research, 2021,28: 195.
[40] SUN Y, WANG Y Z, QING Y B, et al. A DOPO‐base schiff derivative used as a flame retardant for polystyrene[J]. Journal of Applied Polymer Science, 2020,137(39/40): 49224.
[41] LIU Y L. Flame-retardant epoxy resins from novel phosphorus-containing novolac[J]. Polymer, 2001,42(8): 3445-3454.
[42] 高琨. PET回收料的改性研究[D]. 北京:北京工商大学, 2010.
[43] YAN Y N, LIANG B. Flame-retardant behavior and mechanism of a DOPO-based phosphorus-nitrogen flame retardant in epoxy resin[J]. High Performance Polymers, 2018,31(8): 885-892.
[44] LIU Y L, HE J Y, YANG R J. The thermal properties and flame retardancy of 9,10-dihydro-9-oda-10-aphosphaphenanthrene 10-oxide (DOPO)-Mg/polyisocyanurate-polyurethane foam composites[J]. Bulletin of the Chemical Society of Japan, 2016,89(7): 779-785.
[45] LI M L, ZHONG Y H, WANG Z, et al. Flame retarding mechanism of polyamide 6 with phosphorus-nitrogen flame retardant and DOPO derivatives[J]. Journal of Applied Polymer Science, 2015,133: 42932.
[46] KIM W, HOANG D, VOTHI H, et al. Synthesis, flame retardancy, and thermal degradation behaviors of novel organo-phosphorus compounds derived from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)[J]. Macromolecular Research,2016,24(1): 66-73.
[47] WANG H, WANG S, DU X S, et al. Synthesis of a novel flame retardant based on DOPO derivatives and its application in waterborne polyurethane[J]. RSC Advances, 2019,9(13): 7411-7419.

相似文献/References:

[1]郭俊芳,鄢国平,郑华明.Sm(HTH)3Phen在改性MCM41中的组装及发光性质[J].武汉工程大学学报,2011,(07):60.
 GUO Junfang,YAN Guoping,ZHENG Huaming.Incorporation of rareearth complex Sm(HTH)3Phen into surfacemodified MCM41 and their photophysical properties[J].Journal of Wuhan Institute of Technology,2011,(05):60.
[2]董桂芳,官仕龙*,程锐,等.卷烟胶的合成及影响因素[J].武汉工程大学学报,2011,(09):26.
 DONG Guifang,GUAN Shilong*,CHENG Rui,et al.Synthesis of cigarette adhesive and factors of affecting its performance[J].Journal of Wuhan Institute of Technology,2011,(05):26.
[3]张勇,朱永昌,李俊,等.废玻璃改性氯氧镁水泥的研究[J].武汉工程大学学报,2011,(10):57.
 ZHANG Yong,ZHU Yong chang,LI Jun,et al.Research on magnesium oxygenchloride cement modified by waste glass[J].Journal of Wuhan Institute of Technology,2011,(05):57.
[4]李铭,汪艳,胡吉良,等.水性环氧树脂改性水泥力学性能[J].武汉工程大学学报,2011,(11):52.
 LI Ming,WANG Yan,HU Ji liang,et al.Mechanical properties of waterborne epoxyresin modified concrete material[J].Journal of Wuhan Institute of Technology,2011,(05):52.
[5]马文梅,王营茹,明银安*,等.锂盐改性累托石处理染料废水[J].武汉工程大学学报,2012,(2):19.
 MA Wen\|mei,WANG Ying\|ru,MING Yin\|an,et al.Dye wastewater treatment by rectorite modified by lithium[J].Journal of Wuhan Institute of Technology,2012,(05):19.
[6]张晖,赖小莹*,艾常春,等.聚磷酸铵的合成及改性研究进展[J].武汉工程大学学报,2012,(10):32.[doi:103969/jissn16742869201210008]
 ZHANG Hui,LAI Xiao ying,AI Chang chun,et al.Development on synthesis and modification of APPⅡ[J].Journal of Wuhan Institute of Technology,2012,(05):32.[doi:103969/jissn16742869201210008]
[7]张富青,陈晓霞,袁军,等.纳米碳酸钙对回收丙烯腈\|丁二烯\|苯乙烯共聚物性能的影响[J].武汉工程大学学报,2013,(09):59.[doi:103969/jissn167428692013090012]
 ZHANG Fu\|qing,Chen Xiao\|xia,Yuan Jun,et al.Effect of nano calcium carbonate on mechanical properties of recycled acrylonitrile\|butadiene\|styrene copolymer[J].Journal of Wuhan Institute of Technology,2013,(05):59.[doi:103969/jissn167428692013090012]
[8]袁华,何云蔚,艾常春.钛酸锂作为锂离子电池负极材料的改性进展[J].武汉工程大学学报,2014,(08):20.[doi:103969/jissn16742869201408004]
 YUAN Hua,HE Yun wei,AI Chang chun.Progress of modification of lithium titanate as anode material for lithiumion battery[J].Journal of Wuhan Institute of Technology,2014,(05):20.[doi:103969/jissn16742869201408004]
[9]张勇,杨浩.改性果酸粉体的大分子明胶法制备及其缓释作用[J].武汉工程大学学报,2014,(08):27.[doi:103969/jissn16742869201408005]
 ZHANG Yong,YANG Hao.Preparation and release properties of fruit acid powders modified by gelatin[J].Journal of Wuhan Institute of Technology,2014,(05):27.[doi:103969/jissn16742869201408005]
[10]杨光忠,汪媛,王营茹.金属盐类改性累托石的制备及吸附性能[J].武汉工程大学学报,2014,(11):32.[doi:103969/jissn167428692014011006]
 YANG Guang zhong,WANG Yuan,WANG Ying ru.Preparation and adsorption performance of metal salt modified rectorite[J].Journal of Wuhan Institute of Technology,2014,(05):32.[doi:103969/jissn167428692014011006]

备注/Memo

备注/Memo:
收稿日期:2023-07-07
基金项目:绿色化工过程教育部重点实验室创新基金(GCXP202109)
作者简介:胡元文,硕士研究生。Email:[email protected]
*通信作者:许莉莉,硕士,副教授。Email:[email protected]
引文格式:胡元文,徐智,刘生鹏,等. 新型磷系阻燃剂的合成及应用研究进展[J]. 武汉工程大学学报,2024,46(5):473-481.
更新日期/Last Update: 2024-10-26