[2] 钱立军. 现代阻燃材料与技术[M]. 北京: 化学工业出版社, 2021.
[3] 张权, 董广峰, 马鸣杨, 等. 碱式氯化镁晶须的制备及其生长机理研究[J]. 武汉工程大学学报, 2023,45(3): 256-261.
[4] 字春光, 苏友波, 包立, 等. 我国磷石膏资源化利用现状及对策建议[J]. 安徽农业科学, 2018,46(5): 73-76.
[5] VELENCOSO M M, BATTIG A, MARKWART J C, et al. Molekulare Brandbek?mpfung-mie moderne Phosphorchemie sur L?sung der Flammschutzaufgabe beitragen mann[J]. Angewandte Chemie, 2018,130(33): 10608-10626.
[6] XU F, ZHANG G X, WANG P, et al. A novel ε-polylysine-derived durable phosphorus‐nitrogen‐based flame retardant for cotton fabrics[J]. Cellulose, 2021,28(6): 3807-3822.
[7] WANG X Y, WANG J M, ZHAO W, et al. Effects of flame retardants containing P-O-C and P-C structures on the flame retardant properties of epoxy resin[J]. Polymers for Advanced Technologies, 2023,34(3): 1046-1058.
[8] LIU J, DONG C H, ZHANG Z, et al. Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer[J]. Cellulose, 2020,27(6): 3531-3549.
[9] 宋远超,陈国文,姚慧玲,等. 硅系阻燃剂作用机理及应用进展[J]. 有机硅材料,2018,32(6): 496-500.
[10] QIU S, WANG X, YU B, et al. Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins[J]. Journal of Hazardous Materials,2017,325: 327-339.
[11] HAMCIUC C,VLAD BUBULAC T,SERBEZEANU D, et al. Eco‐friendly flame retardant epoxy nanocomposites based on polyphosphonate and halloysite nanotubes[J]. Journal of Vinyl and Additive Technology, 2023,29(1): 29-40.
[12] LIU H, DU Y, LEI S H, et al. Flame-retardant activity of modified boron nitride nanosheets to cotton[J]. Textile Research Journal,2020,90(5/6):512-522.
[13] 郝聃, 王锐, 王文庆. 硼系阻燃剂在高聚物阻燃中的应用研究进展[J]. 高分子材料科学与工程, 2021,37(5): 115-123.
[14] 朱丽君, 陈金芳. 有机磷系阻燃剂文献计量学分析[J]. 武汉工程大学学报, 2012,34(7): 75-78.
[15] 刘晓双. 磷系阻燃剂的应用及研究进展[J]. 山东化工, 2022,51(13): 83-84, 88.
[16] 刘仿军, 武菊, 李亮, 等. 六苯氧基环三磷腈的合成及其阻燃应用[J]. 武汉工程大学学报, 2013,35(4): 48-51.
[17] 王承慧, 张英强, 杨晨熙, 等. 含DOPO阻燃环氧树脂的研究进展[J]. 应用技术学报, 2022,22(4): 321-325, 352.
[18] MA T T, LI L P, MEI C T, et al. Synthesis of a vanillin‐based curing agent and its application in wood to improve dimensional stability and flame retardancy[J]. Polymers for Advanced Technologies, 2022,33(10): 3249-3262.
[19] JING J, ZHANG Y, TANG X L, et al. Synthesis of a highly efficient phosphorus-containing flame retardant utilizing plant-derived diphenolic acids and its application in polyactic acid[J]. RSC Advances, 2016,6(54): 49019-49027.
[20] HU X, WANG B T, GUO Z H, et al. Roles of phosphoramide derivatives in flame retardancy, thermal degradation and crystallization behaviors of polyactic acid[J]. International Journal of Biological Macromolecules, 2022,219: 558-570.
[21] ZHU Z M, WANG L X, DONG L P. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin[J]. Polymer Degradation and Stability, 2019,162: 129-137.
[22] ARORA S, MESTRY S, NAIK D, et al. O-phenylenediamine-derived phosphorus-based cyclic flame retardant for epoxy and polyurethane systems[J]. Polymer Bulletin, 2020,77(6): 3185-3205.
[23] JIANG J W, GUO R F, SHEN H F, et al. Phosphine oxide for reducing flammability of ethylene-vinyl-acetate copolymer[J]. e-Polymers, 2021,21(1): 299-308.
[24] LUBCZAK J, LUBCZAK R. Oligoetherols and polyurethane foams based on acyclotriphosphazene of reduced flammability[J]. Macromolecular Research, 2023,31(5): 455-468.
[25] DAGDAG O, BACHIRI A E, HAMED O, et al. Dendrimeric epoxy resins based on hexachlorocyclotriphosphazene as a reactive flame retardant polymeric materials: a review[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021,31(8): 3240-3261.
[26] AFSHARI M, DINARI M. Improving the reaction-to-fire properties of thermoplastic polyurethane by new phosphazene-triazinyl-based covalent organic framework[J]. ACS Applied Materials & Interfaces, 2022,14(43): 49003-49013.
[27] VEDACHALAM S, SEKAR P, NITHYA C, et al. Dopant-free main group elements supported covalent organic-inorganic hybrid conducting polymer for sodium-ion battery application[J]. ACS Applied Energy Materials, 2022,5(1): 557-566.
[28] KANG H, BUI T T, YUN B, et al. Phosphazene based LATP precursor for a CEI coating layer on high voltage LiNi0.5Mn1.5O4 cathode with improved cycling durability[J]. Materials Chemistry and Physics, 2022,290: 126492.
[29] PIRI M, HERAVI M M, ELHAMPOUR A, et al. Silver nanoparticles supported on P, Se-cooped g-C3N4 nanosheet as a novel heterogeneous catalyst for reduction of nitroaromatics to their corresponding amines[J]. Journal of Molecular Structure, 2021,1242: 130646.
[30] YU H L, TIAN L, ZHU Y X, et al. Effect of cyclophosphazene nucleated hyperbranched polyester on flame retardancy and mechanical properties of epoxy resins[J]. Journal of Applied Polymer Science, 2022,139(25):e52404.
[31] WANG C H, HU F, YANG K J, et al. Synthesis and properties of star-branched nylon 6 with hexafunctional acyclotriphosphazene core[J]. RSC Advances, 2015,5(107): 88382-88391.
[32] ZHANG S, LI Y C, GUO J, et al. Preparation of hexakis (4‐aldehyde phenoxy) acyclotriphosphazene grafted kaolinite and its synergistic fire resistance in poly (butylene succinate)[J]. Polymer Composites, 2019,41(3): 1024-1035.
[33] LIU H, WANG X D, WU D Z. Preparation, isothermal kinetics, and performance of a novel epoxy thermosetting system based on phosphazene-cyclomatrix network for halogen-free flame retardancy and high thermal stability[J]. Thermochimica Acta, 2015,607: 60-73.
[34] CHENG J W, WANG J, YANG S, et al. Aminobenzothiazole-substituted acyclotriphospha-zene derivative as reactive flame retardant for epoxy resin[J]. Reactive and Functional Polymers, 2020,146: 104412.
[35] CHENG J W, WANG J, YANG S, et al. Benzimidazolyl-substituted acyclotriphosphazene derivative as latent flame-retardant curing agent for one-component epoxy resin system with excellent comprehensive performance[J]. Composites Part B: Engineering, 2019,177: 107440.
[36] LIU H, WANG X D, WU D Z. Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: synthesis, curing behaviors, and flame retardancy[J]. Polymer Degradation and Stability, 2014,103: 96-112.
[37] LIANG W J, ZHAO B, ZHAO P H, et al. Bisphenol-S bridged penta(anilino)acyclotriphosphazene and its application in epoxy resins: synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability, 2017,135: 140-151.
[38] TAN W, REN Y L, GUO Y B, et al. A novel multi-claw reactive flame retardant derived from DOPO for endowing lyocell fabric with high effective flame retardancy [J]. Cellulose, 2022,29(12): 6941-6962.
[39] HU R, HE K B, ZHENG X H, et al. Preparation and properties of flame retardant epoxy resin modified by additive nitrogen-containing POSS-based molecule with eight DOPO units[J]. Journal of Polymer Research, 2021,28: 195.
[40] SUN Y, WANG Y Z, QING Y B, et al. A DOPO‐base schiff derivative used as a flame retardant for polystyrene[J]. Journal of Applied Polymer Science, 2020,137(39/40): 49224.
[41] LIU Y L. Flame-retardant epoxy resins from novel phosphorus-containing novolac[J]. Polymer, 2001,42(8): 3445-3454.
[42] 高琨. PET回收料的改性研究[D]. 北京:北京工商大学, 2010.
[43] YAN Y N, LIANG B. Flame-retardant behavior and mechanism of a DOPO-based phosphorus-nitrogen flame retardant in epoxy resin[J]. High Performance Polymers, 2018,31(8): 885-892.
[44] LIU Y L, HE J Y, YANG R J. The thermal properties and flame retardancy of 9,10-dihydro-9-oda-10-aphosphaphenanthrene 10-oxide (DOPO)-Mg/polyisocyanurate-polyurethane foam composites[J]. Bulletin of the Chemical Society of Japan, 2016,89(7): 779-785.
[45] LI M L, ZHONG Y H, WANG Z, et al. Flame retarding mechanism of polyamide 6 with phosphorus-nitrogen flame retardant and DOPO derivatives[J]. Journal of Applied Polymer Science, 2015,133: 42932.
[46] KIM W, HOANG D, VOTHI H, et al. Synthesis, flame retardancy, and thermal degradation behaviors of novel organo-phosphorus compounds derived from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)[J]. Macromolecular Research,2016,24(1): 66-73.
[47] WANG H, WANG S, DU X S, et al. Synthesis of a novel flame retardant based on DOPO derivatives and its application in waterborne polyurethane[J]. RSC Advances, 2019,9(13): 7411-7419.