|本期目录/Table of Contents|

[1]王雪燕,袁嘉泽,何禄英*.C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究[J].武汉工程大学学报,2024,46(05):490-496.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]
 WANG Xueyan,YUAN Jiaze,HE Luying*.Photocatalytic degradation of methylene blue by C-vacancy andg-C3N4/BiOCl heterojunction [J].Journal of Wuhan Institute of Technology,2024,46(05):490-496.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]
点击复制

C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年05期
页码:
490-496
栏目:
化学与化学工程
出版日期:
2024-10-28

文章信息/Info

Title:
Photocatalytic degradation of methylene blue by C-vacancy and
g-C3N4/BiOCl heterojunction
文章编号:
1674 - 2869(2024)05 - 0490 - 07
作者:
王雪燕袁嘉泽何禄英*
武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),
湖北 武汉 430205
Author(s):
WANG Xueyan YUAN Jiaze HE Luying*
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology;Key Laboratory of Green Chemical Process of Ministry of Education(Wuhan Institute of Technology),Wuhan 430205,China
关键词:
g-C3N4BiOCl碳空位异质结光催化降解
Keywords:
g-C3N4 BiOCl carbon vacancy heterojunction photocatalytic degradation
分类号:
O611.3
DOI:
10.19843/j.cnki.CN42-1779/TQ.202311012
文献标志码:
A
摘要:
采用水热法合成了含C空位的g-C3N4,并将不同含量的BiOCl负载其上制备得到g-C3N4/BiOCl复合光催化剂。采用电子顺磁共振、X射线光电子能谱、扫描电子显微镜、透射电子显微镜和紫外-可见漫反射光谱等手段对光催化剂的结构、形貌以及光吸收性能进行表征。以亚甲基蓝为目标降解物,探究了C空位和BiOCl对g-C3N4光降解性能的影响以及复合光催化剂催化降解机理。结果表明:与BiOCl和g-C3N4相比,制得的复合光催化剂不仅可以调控电子结构,还能有效分离光生电子和空穴,两者协同作用增强了光催化降解亚甲基蓝的效率。当负载质量分数70%BiOCl时,g-C3N4/BiOCl光催化降解效率在光反应90 min时达到了88.6%,其光催化性能显著优于纯相g-C3N4与BiOCl。
Abstract:
C-vacancy-containing g-C3N4 was synthesized using a hydrothermal method, and composite photocatalysts of g-C3N4/BiOCl with different BiOCl loadings were prepared. The structure, morphology, and light absorption properties of the photocatalysts were characterized using electron paramagnetic resonance, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy. Methylene blue was used as the degradation target to investigate the impact of carbon vacancies and BiOCl on the photocatalytic degradation performance of g-C3N4, along with the degradation mechanism of the composite photocatalyst. Results show that the synthesized composite photocatalyst, compared to BiOCl and g-C3N4 alone, can regulate the electronic structure and effectively separate photogenerated electrons and holes. This synergistic effect enhances the efficiency of photocatalytic degradation of methylene blue. With 70% BiOCl loading, the photocatalytic degradation efficiency of g-C3N4/BiOCl reached 88.6% after 90 minutes of light reaction, outperforming pure-phase g-C3N4 and BiOCl.

参考文献/References:

[1] CARVALHO K T G, NOGUEIRA A E, LOPES O F, et al. Synthesis of g-C3N4/Nb2O5 heterostructures and their application in the removal of organic pollutants under visible and ultraviolet irradiation [J]. Ceramics International, 2017, 43(4): 3521-3530.

[2] AHMED S N, HAIDER W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review [J]. Nanotechnology, 2018, 29(34): 342001-342032.
[3] MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment: a critical review [J]. Water Research, 2018, 139: 118-131.
[4] BABU D S, SRIVASTAVA V, NIDHEESH P V, et al. Detoxification of water and wastewater by advanced oxidation processes [J]. Science of the Total Environment, 2019, 696: 133961-133981.
[5] 沈浩,黄茜,冯锐捷. Zr掺杂介孔硅对亚甲基蓝的选择性吸附性能 [J]. 武汉工程大学学报, 2023, 45(1): 25-34.
[6] JIANG L B, YUAN X Z, PAN Y, et al. Doping of graphitic carbon nitride for photocatalysis: a review [J]. Applied Catalysis B: Environmental, 2017, 217: 388-406.
[7] LIU J, WANG H Q, ANTONIETTI M. Graphitic carbon nitride "reloaded": emerging applications beyond (photo)catalysis [J]. Chemical Society Reviews, 2016, 45(8): 2308-2326.
[8] AKHUNDI A, BADIEI A, ZIARANI G M, et al. Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production [J]. Molecular Catalysis, 2020, 488: 110902.
[9] GAO M M, FENG J, ZHANG Z Q, et al. Wrinkled ultrathin graphitic C3N4 nanosheets for photocatalytic degradation of organic wastewater [J]. ACS Applied Nano Materials, 2018, 1(12): 6733-6741.
[10] ONG W J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter?[J]. Frontiers in Materials, 2017, 4: 1-10.
[11] XU J, MENG W, ZHANG Y, et al. Photocatalytic degradation of tetrabromobisphenol a by mesoporous BiOBr: efficacy, products and pathway [J]. Applied Catalysis B: Environmental, 2011, 107(3/4): 355-362.
[12] LIN W, QIAO N. On vibration and instability of carbon nanotubes conveying fluid [J]. Computational Materials Science, 2008, 43(2): 399-402.
[13] YE L Q, ZAN L, TIAN L H, et al. The 001 facets-dependent high photoactivity of BiOCl nanosheets [J]. Chemical Communications,2011,47(24): 6951-6953.
[14] MOUSAVI M, HABIBI-YANGJEH A, POURAN S R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts [J]. Journal of Materials Science: Materials in Electronics, 2017, 29(3): 1719-1747.
[15] PAWAR R C, KANG S, PARK J H, et al. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability [J]. Scientific Reports, 2016, 6: 31147.
[16] LI H, LI J, AI Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives [J]. Angewandate Chemie, 2018, 57(1): 122-138.
[17] GUO F R, CHEN J C, ZHAO J Z, et al. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole [J]. Chemical Engineering Journal, 2020, 386: 124014-124031.
[18] YANG Y J, BIAN Z Y. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen [J]. Science of the Total Environment, 2021, 753: 141908.
[19] GAO X M, GAO K L, LI X B, et al. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants [J]. Catalysis Science & Technology, 2020, 10(2): 372-381.
[20] PEI Z Z, GUO H Y, XU J Q, et al. Synthesis, mechanism and characterization of SiO2/BiOX (X=Br, Cl): efficient photocatalytic degradation of various antibiotics under visible-light irradiation [J]. Journal of Materials Science: Materials in Electronics, 2022, 33(27): 21497-21511.
[21] ZOU Y J, SHI J W, MA D D, et al. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution [J]. Chemical Engineering Journal, 2017, 322: 435-444.
[22] ZHANG L, NIU C G, ZHAO X F, et al. Ultrathin BiOCl single-crystalline nanosheets with large reactive facets area and high electron mobility efficiency: a superior candidate for high-performance dye self-photosensitization photocatalytic fuel cell [J]. ACS Applied Materials and Interfaces, 2018, 10(46): 39723-39734.
[23] QI S Y, LIU X T, ZHANG R Y, et al. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction [J]. Inorganic Chemistry Communi-cations, 2021, 133: 108907-108917.
[24] GU Z Y, CUI Z T, WANG Z J, et al. Carbon vacancies and hydroxyls in graphitic carbon nitride: promoted photocatalytic NO removal activity and mechanism [J]. Applied Catalysis B: Environ-mental, 2020, 279(1):119376.
[25] PRABHAKARAN M P,VENUGOPAL J, GHASEMI-MOBARAKEH L, et al. Stem cells and nanostructures for advanced tissue regeneration. Biomedical applications of polymeric nanofibers [M]. Berlin, Heidelberg: Springer, 2011: 21-62.
[26] JACOBS G, JI Y, DAVIS B H, et al. Fischer-tropsch synthesis: temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles [J]. Applied Catalysis A: General, 2007, 333(2): 177-191.
[27] HE Z Q, SHI Y Q, GAO C, et al. BiOCl/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation [J]. The Journal of Physical Chemistry C, 2013, 118(1): 389-398.
[28] SHI S, GONDAL M A, AL-SAADI A A, et al. Facile preparation of g-C3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photoactivity enhancement [J]. Journal of Colloid Interface Science, 2014, 416: 212-219.
[29] HE J Y, ZHANG D, WANG X J, et al. Phosphorylation of NiAl-layered double hydroxide nanosheets as a novel cocatalyst for photocatalytic hydrogen evolution [J]. International Journal of Hydrogen Energy, 2021,46(36):18977-18987.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-11-22
基金项目:武汉工程大学第十四届研究生教育创新基金(CX2022026);武汉工程大学绿色化工过程教育部重点实验室创新基金(GCX2023005);国家级大学生创新创业训练计划项目(202110490002)
作者简介:王雪燕,硕士研究生。Email:[email protected]
*通信作者:何禄英,博士,副教授。Email:[email protected]
引文格式:王雪燕,袁嘉泽,何禄英,等. C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究[J]. 武汉工程大学学报,2024,46(5):490-496,542 .
更新日期/Last Update: 2024-10-26