|本期目录/Table of Contents|

[1]刘媛媛,薛开诚,张云飞,等.MoS2/PVA光热海绵的制备及其水蒸发性能[J].武汉工程大学学报,2024,46(05):510-515.[doi:10.19843/j.cnki.CN42-1779/TQ.202307019]
 LIU Yuanyuan,XUE Kaicheng,ZHANG Yunfei,et al.Preparation of MoS2/PVA photothermal sponge andits water evaporation performance[J].Journal of Wuhan Institute of Technology,2024,46(05):510-515.[doi:10.19843/j.cnki.CN42-1779/TQ.202307019]
点击复制

MoS2/PVA光热海绵的制备及其水蒸发性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年05期
页码:
510-515
栏目:
材料科学与工程
出版日期:
2024-10-28

文章信息/Info

Title:
Preparation of MoS2/PVA photothermal sponge and
its water evaporation performance

文章编号:
1674 - 2869(2024)05 - 0510 - 06
作者:
刘媛媛薛开诚张云飞付 萍杜飞鹏张 桥*
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
LIU YuanyuanXUE KaichengZHANG YunfeiFU PingDU FeipengZHANG Qiao*
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
二硫化钼聚乙烯醇海绵光热转换界面蒸发水蒸发效率
Keywords:
molybdenum disulfidepolyvinyl alcohol spongephotothermal conversioninterfacial evaporationwater evaporation efficiency
分类号:
O631.2
DOI:
10.19843/j.cnki.CN42-1779/TQ.202307019
文献标志码:
A
摘要:
太阳能驱动界面蒸发是海水淡化和废水处理最有前途的技术之一。开发成本低廉、制备方法简单及光热转换效率高的太阳能光热材料是该技术实现规模应用的关键因素。以水为溶剂,聚乙烯醇(PVA)为基体,二硫化钼(MoS2)为光热材料,通过一锅法制备了聚乙烯醇负载二硫化钼(MoS2/PVA)海绵。通过扫描电子显微镜和能量色散X射线谱仪、傅里叶变换红外光谱仪、X射线衍射仪、接触角分析仪和水蒸发测试仪表征了海绵的结构与性能。实验结果证实了MoS2成功负载在PVA海绵基体中。研究了MoS2的用量对MoS2/PVA海绵的光吸收性能、光热性能以及太阳能驱动界面水蒸发性能的影响。结果表明:当MoS2的质量分数为7.5%时,制备的MoS2/PVA海绵在1 kW/m2太阳光强度下具有最高的水蒸发速率,蒸发速率可达1.37 kg/(m2·h),约为纯水蒸发速率0.31 kg/(m2·h)的4.42倍,并且MoS2/PVA海绵的水蒸发效率达到93.1%。
Abstract:
Solar-driven interfacial evaporation is one of the most promising technologies for seawater desalination and waste water treatment. Low cost,simple preparation,and high photothermal conversion efficiency of solar photothermal materials are crucial factors for the successful large-scale application of this technology. In this work,water was used as the solvent,polyvinyl alcohol (PVA) as the matrix,and molybdenum disulfide (MoS2) as the photothermal material to prepare polyvinyl alcohol sponge loaded with molybdenum disulfide (MoS2/PVA) through a one-pot method. The structure and properties of the sponges were characterized by using scanning electron microscope and energy dispersive X-ray spectrometer,Fourier transform infrared spectrometer,X-ray diffraction,contact angle analyzer and water evaporation tester. Experimental results confirmed the successful loading of MoS2 into the PVA sponge matrix. The influence of MoS2 content on the light absorption performance,photothermal performance,and solar-driven interfacial water evaporation performance of MoS2/PVA sponge were studied. Results show that at a MoS2 mass fraction of 7.5%,the prepared MoS2/PVA sponge exhibited the highest water evaporation rate under a 1 kW/m2 solar intensity,reaching an evaporation rate of 1.37 kg/(m2·h),approximately 4.42 times higher than the pure water evaporation rate of 0.31 kg/(m2·h), and the pure water evaporation efficiency of the MoS2/PVA sponge reached 93.1%.

参考文献/References:

[1] LI Z T,WANG C B,SU J B,et al. Fast-growing field of interfacial solar steam generation:evolutional materials,engineered architectures,and synergistic applications [J]. Solar RRL,2019,3(3):1800206.

[2] GAO X,REN P G,WANG J,et al. Fabrication of visible-light responsive TiO2@C photocatalyst with an ultra-thin carbon layer to efficiently degrade organic pollutants [J]. Applied Surface Science,2020,532:147482.
[3] VERBEKE R,GóMEZ V,VANKELECOM I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes [J]. Progress in Polymer Science,2017,72:1-15.
[4] ELIMELECH M,PHILLIP W A. The future of seawater desalination:energy,technology,and the environment [J]. Science,2011,333(6043):712-717.
[5] 胡承志,刘会娟,曲久辉.电化学水处理技术研究进展[J].环境工程学报,2018,12(3):677-696.
[6] MERAL M E,DIN?ER F. A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems [J]. Renewable and Sustainable Energy Reviews,2011,15(5):2176-2184.
[7] AL-SHAHRI O A,ISMAIL F B,HANNAN M A,et al. Solar photovoltaic energy optimization methods,challenges and issues:a comprehensive review [J]. Journal of Cleaner Production,2021,284:125465.
[8] KUANG Y D,CHEN C J,HE S M,et al. A high-performance self-regenerating solar evaporator for continuous water desalination [J]. Advanced Materials,2019,31(23):1900498.
[9] HU T X,KWAN T H,YANG H L,et al. Photothermal conversion potential of full-band solar spectrum based on beam splitting technology in concentrated solar thermal utilization [J]. Energy,2023,268:126763.
[10] ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation:advanced designs and applications [J]. Nano Energy,2019,57:507-518.
[11] SHANNON M A, BOHN P W, ELIMELECH M,et al. Science and technology for water purification in the coming decades [J]. Nature,2008,452(7185):301-310.
[12] HE F,WU X C,GAO J,et al. Solar-driven interfacial evaporation toward clean water production:burgeoning materials,concepts and technologies [J]. Journal of Materials Chemistry A,2021,9(48):27121-27139.
[13] RAVI KUMAR K,KRISHNA CHAITANYA N V V,NATARAJAN S K. Solar thermal energy technologies and its applications for process heating and power generation:a review [J]. Journal of Cleaner Production,2021,282:125296.
[14] LI C N,GOSWAMI Y G,STEFANAKOS E. Solar assisted sea water desalination:a review [J]. Renewable and Sustainable Energy Reviews,2013,19:136-163.
[15] ZHANG J J, MA J X, LIU D Q, et al. Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation [J]. Journal of Materials Chemistry A,2022,10(19):10548-10556.
[16] QU W,ZHAO H N,ZHANG Q,et al. Multifunctional Au/Ti3C2 photothermal membrane with antibacterial ability for stable and efficient solar water purification under the full spectrum [J]. ACS Sustainable Chemistry & Engineering,2021,9(34):11372-11387.
[17] YUAN B H,MENG L S,ZHANG C F,et al. Enhancement of pollutant degradation and solar-driven water evaporation by architecting hierarchical 1D/2D TiO2@MoS2 core-shell networks [J]. Applied Surface Science,2021,570:151143.
[18] LI X S,TANYANG S Y,XIE S J,et al. A 3D porous PDMS sponge embedded with carbon nanoparticles for solar driven interfacial evaporation [J]. Separation and Purification Technology,2022,292:120985.
[19] QIAO L F,LI S,LI N,et al. Fabrication of monopile polymer foams via rotating gas foaming:hybrid applications in solar-powered interfacial evaporation and water remediation [J]. Solar RRL,2022,6(8):2200241.
[20] TAN C L,CAO X H,WU X J,et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews,2017,117(9):6225-6331.
[21] YIN J C,YOU X,ZHANG Z X,et al. Boron nanosheets loaded with MoS2 porous sponges for water purification [J]. Journal of Water Process Engineering,2021,41:102048.
[22] HUANG J,HE Y R,CHEN M J,et al. Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber [J]. Applied Energy,2019,236:244-252.
[23] CAO H X,WANG D,SUN Z Y,et al. In situ carbonized polyvinyl alcohol (PVA)sponge by a dehydration reaction for solar-driven interfacial evaporation [J]. Sustainability,2022,14(17):10945.
[24] 成鸿静,杨兆华,刘辉,等. 一锅法制备聚乙烯醇载银海绵及其催化性能[J]. 武汉工程大学学报,2021,43(6):616-621.
[25] LI X Q,NI G,COOPER T,et al. Measuring conversion efficiency of solar vapor generation [J]. Joule,2019,3(8):1798-1803.

相似文献/References:

[1]成鸿静,杨兆华,刘 辉,等.一锅法制备聚乙烯醇载银海绵及其催化性能[J].武汉工程大学学报,2021,43(06):616.[doi:10.19843/j.cnki.CN42-1779/TQ.202106018]
 CHENG Hongjing,YANG Zhaohua,LIU Hui,et al.Preparation of Silver Loaded Polyvinyl Alcohol Sponge by One-Pot Method and Its Catalytic Performance[J].Journal of Wuhan Institute of Technology,2021,43(05):616.[doi:10.19843/j.cnki.CN42-1779/TQ.202106018]

备注/Memo

备注/Memo:
收稿日期:2023-07-20
基金项目:国家自然科学基金(51803157)
作者简介:刘媛媛,硕士研究生。Email:[email protected]
*通信作者:张 桥,博士,副教授。Email:[email protected]
引文格式:刘媛媛,薛开诚,张云飞,等. MoS2/PVA光热海绵的制备及其水蒸发性能[J]. 武汉工程大学学报,2024,46(5):510-515.
更新日期/Last Update: 2024-10-26