[2] WANG Y L, JIANG X C, XIA Y N. A solution-phase,precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions [J]. Journal of the American Chemical Society,2003,125(52):16176-16177.
[3] LI F,XU J Q,YU X H, et al. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles [J]. Sensors and Actuators B:Chemical,2002,81(2/3):165-169.
[4] PISAREV R V,PAVLOV V V,KALASHNIKOVA A M,et al. Near-band gap electronic structure of the tetragonal rare-earth cuprates R2CuO4 and the bismuth cuprate Bi2CuO4 [J]. Physical Review B,2010,82(22):224502.
[5] NERI G, BONAVITA A,RIZZO G, et al. Methanol gas-sensing properties of CeO2-Fe2O3 thin films [J]. Sensors and Actuators B:Chemical,2006,114(2):687-695.
[6] FUJITA S,SUZUKI K,MORI T. Preparation of high-performance Co3O4 catalyst for hydrocarbon combustion from Co-containing hydrogarnet [J]. Catalysis Letters,2003,86(1/2/3):139-144.
[7] LI W Y, XU L N, CHEN J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors [J]. Advanced Functional Materials,2005,15(5):851-857.
[8] LOU X W,DENG D,LEE J Y,et al. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes [J]. Advanced Materials,2008,20(2):258-262.
[9] 罗海彬,曹庆成,覃远航.Co掺杂ZIF-8衍生合成高效Co-N-C氧还原催化剂的研究[J].武汉工程大学学报,2023,45(1):35-41.
[10] KOLMAKOV A,MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annual Review of Materials Research,2004,34:151-180.
[11] WEN Z,ZHU L P,MEI W M,et al. A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing [J]. Journal of Materials Chemistry A,2013,1(25):7511-7518.
[12] PANG X B, SHAW M D, LEWIS A C, et al. Electrochemical ozone sensors:a miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring [J]. Sensors and Actuators B: Chemical,2017,240:829-837.
[13] GONG S Y,LI W H,XIE Z, et al. Low temperature decomposition of ozone by facilely synthesized cuprous oxide catalyst [J]. New Journal of Chemistry,2017,41(12):4828-4834.
[14] BAKSHI M S. How surfactants control crystal growth of nanomaterials [J]. Crystal Growth & Design,2016,16(2):1104-1133.
[15] 贺胜,林志东.纳米Co3O4的制备及其臭氧辅助下对乙醇的气敏性能[J].武汉工程大学学报,2021,43(6):622-625,631.
[16] CHENG L H,WANG Y K, LIN Z D, et al. Preparation and morphology controlling of Co3O4 nanostructures and their gas-sensing properties [J]. MRS Communications,2024,14(3):356-362.
[17] WANG W C, TIAN Y T, WANG X C, et al. Ethanol sensing properties of porous ZnO spheres via hydrothermal route [J]. Journal of Materials Science,2013,48(8):3232-3238.
[18] CHEN Z W, LIN Z D, XU M Y, et al. Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets [J]. Electronic Materials Letters,2016,12(3):343-349.
[19] 谭依玲,李诗纯,杨希,等. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展,2022,34(8):1784-1795.
[20] CAO R R,LI L X,ZHANG P Y,et al. Regulating oxygen vacancies in ultrathin δ-MnO2 nanosheets with superior activity for gaseous ozone decomposition [J]. Environmental Science:Nano,2021,8(6):1628-1641.
[21] KIM H J,LEE J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors:overview [J]. Sensors & Actuators B:Chemical,2014,192:607-627.
[22] HU J,GUAN W W,XIONG X Q,et al. Modulation of rGO-Co3O4 heterojunction with multi-walled carbon nanotubes for efficient ethanol detection [J]. Sensors and Actuators B:Chemical,2022,368:132202.
[23] KOZIEJ D, THOMAS K, BARSAN N, et al. Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors:operando studies [J]. Catalysis Today,2007,126(1/2):211-218.
[24] LIU L M,WANG H H,ZHANG X W,et al. Synthesis of novel RuO2/NaBi(MoO4)2 nanosheets composite and its gas sensing performances towards ethanol [J]. Sensors and Actuators B:Chemical,2016,237:275-283.