[2] RIDDELL N,JIN U H,SAFE S,et al. Characterization and biological potency of mono- to tetra-halogenated carbazoles [J]. Environmental Science and Technology, 2015, 49(17): 10658-10666.
[3] JI C Y, SHEN C, ZHOU Y X, et al. AhR agonist activity confirmation of polyhalogenated carbazoles (PHCZs) using an integration of in vitro, in vivo, and in silico models [J]. Environmental Science and Technology, 2019, 53(24): 14716-14723.
[4] DUMUR F. Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: simplicity, efficacy [J]. Organic Electronics, 2015, 25: 345-361.
[5] KARON K, LAPKOWSKI M, JUOZAS G. Electrochemical and UV-Vis/ESR spectroelectro-chemical properties of polymers obtained from isomeric 2,7-and 3,6-linked carbazole trimers; influence of the linking topology on polymers properties [J]. Electrochimica Acta, 2014, 123: 176-182.
[6] SUN Y X, YANG L L, ZHENG M H, et al. Industrial source identification of polyhalogenated carbazoles and preliminary assessment of their global emissions [J]. Nature Communications, 2023, 14(1): 3740.
[7] ZHANG M, LI P, WANG Q F, et al. Production of polyhalogenated carbazoles in Marine Red Alga Corallina officinalis: a possible natural source [J]. Environmental Science and Technology,2023,57(16): 6673-6681.
[8] FROMME H, MI W, LAHRZ T, et al. Occurrence of carbazoles in dust and air samples from different locations in Germany [J]. Science of the Total Environment, 2018, 610: 412-418.
[9] GUO J H, LI Z N, RANASINGHE P, et al. Spatial and temporal trends of polyhalogenated carbazoles in sediments of upper Great Lakes: insights into their origin[J]. Environmental Science and Technology, 2017, 51(1): 89-97.
[10] MUMBO J, PANDELOVA M, MERTES F, et al. The fingerprints of dioxin-like bromocarbazoles and chlorocarbazoles in selected forest soils in Germany [J]. Chemosphere, 2016, 162: 64-72.
[11] HU H M, ZHAO M R, GUO Y M, et al. Occurrence, bioaccumulation and potential risk of polyhalogenated carbazoles in marine organisms from the East China Sea [J]. Science of The Total Environment, 2022, 807: 150643.
[12] JIN H B, ZHAO N, HU H M, et al. Occurrence and partitioning of polyhalogenated carbazoles in seawater and sediment from East China Sea [J]. Water Research, 2021, 190: 116717.
[13] JIA Y X, CHENG J, SUN H F, et al. Sediment-water distribution and potential sources of polyhalogenated carbazoles in a coastal river locating at a north metropolis, China [J]. Marine Pollution Bulletin, 2023, 189: 114790.
[14] YANG L, ZHANG H L, LI A, et al. Polyhalogenated carbazoles in freshwater and estuarine sediment from China and the United States: a multi-regional study [J]. Science of the Total Environment, 2021, 788: 147908.
[15] 郭远选, 王静, 周佳, 等. 手性农药的环境行为及毒理学研究进展 [J]. 武汉工程大学学报, 2023, 45(6): 591-598.
[16] FANG M L, GUO J H, CHEN D, et al. Halogenated carbazoles induce cardiotoxicity in developing zebrafish (Danio rerio) embryos [J]. Environmental Toxicology and Chemistry, 2016, 35(10): 2523-2529.
[17] JI C Y, YUE S Q, GU J P, et al. 2,7-Dibromocarbazole interferes with tube formation in HUVECs by altering Ang2 promoter DNA methylation status [J]. Science of the Total Environment, 2019, 697: 134156.
[18] JI C Y, LUO Y K, YANG J W, et al. Polyhalogenated carbazoles induce hepatic metabolic disorders in mice via alteration in gut microbiota [J]. Journal of Environmental Sciences, 2023, 127: 603-614.
[19] XIAO F Y, QIU J H, ZHAO Y. Exploring the potential toxicological mechanisms of Vine Tea on the liver based on network toxicology and transcriptomics [J]. Frontiers in Pharmacology, 2022, 13: 855926.
[20] LIU C X, ZHANG C N, WANG W X, et al. Integrated metabolomics and network toxicology to reveal molecular mechanism of celastrol induced cardiotoxicity [J]. Toxicology and Applied Pharmacology, 2019, 383: 114785.
[21] 杨长游, 汤婷婷, 刘秋美, 等. 基于网络药理学探究防己茯苓汤治疗肾病综合征的成分与机制 [J]. 武汉工程大学学报, 2023, 45(5): 496-505.
[22] HUANG M Y, HOU C C, ZHANG Q Y, et al. Tissue-specific accumulation, depuration and histopathological effects of 3,6-dichlorocarbazole and 2,7-dibromocarbazole in adult zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2024, 266: 106803.
[23] WANG X, SHEN Y H, WANG S W, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database [J]. Nucleic Acids Research, 2017, 45(W1): W356-W360.
[24] 孙雅馨, 秦红岩, 臧凯宏, 等. 黄药子致肝脏损伤的网络毒理学分析及验证 [J]. 中国现代应用药学, 2021, 38(24): 3057-3063.
[25] 郭秀欢, 雷艳, 黄宏威, 等. 基于UPLC-Q-TOF-MS/MS和网络毒理学的商陆致肝损伤潜在毒性成分及作用机制探讨 [J]. 药物评价研究, 2023, 46(1): 37-49.
[26] 张林, 王停, 徐子瑛, 等. 基于网络毒理学预测和细胞生物学验证的淫羊藿潜在肝毒性成分与机制研究 [J]. 中国中药杂志, 2021, 46(10): 2413-2423.
[27] LI S, XIE J, ZHANG D F, et al. Lycopene abolishes typical polyhalogenated carbazoles (PHCZs)-induced hepatic injury in yellow catfish (Pelteobagrus fulvidraco): Involvement of ROS/PI3K-AKT/NF-κB signaling [J]. Fish Shellfish Immunol, 2023, 139: 108897.
[28] LI Y Y, LIAO H K, YAO H Y. Prevalence of antibiotic resistance genes in air-conditioning systems in hospitals, farms, and residences [J]. International Journal of Environmental Research and Public Health, 2019, 16(5): 683.
[29] GONG L H, ZHOU H L, WANG C, et al. Hepatoprotective effect of forsythiaside a against acetaminophen-induced liver injury in zebrafish: Coupling network pharmacology with biochemical pharmacology [J]. Journal of Ethnopharmacology, 2021, 271: 113890.
[30] YU Z L, JV Y N, CAI L, et al. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90 [J]. Toxicology and Applied Pharmacology, 2019, 371: 63-73.
[31] ZHU Y P, JING L, LI X Y, et al. Decabromodiphenyl ether disturbs hepatic glycolipid metabolism by regulating the PI3K/AKT/GLUT4 and mTOR/PPARγ/RXRα pathway in mice and L02 cells [J]. Science of the Total Environment, 2021, 763:142936.
[32] QUAN X J, LIANG C L, SUN M Z, et al. Overexpression of steroid receptor coactivators alleviates hyperglycemia-induced endothelial cell injury in rats through activating the PI3K/Akt pathway [J]. Acta Pharmacologica Sinica, 2019, 40(5): 648-657.
[33] JENG K S, LU S J, WANG C H, et al. Liver fibrosis and inflammation under the control of ERK2 [J]. International Journal of Molecular Sciences, 2020, 21(11): 3796.
[34] ZHANG M Y, MA L J, JIANG L, et al. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction [J]. Journal of Ethnopharmacology, 2023, 310: 116422.
[35] ZHANG R, LI H, ZHANG S S, et al. RXRα provokes tumor suppression through p53/p21/p16 and PI3K-AKT signaling pathways during stem cell differentiation and in cancer cells [J]. Cell Death and Disease, 2018, 9: 532.
[36] SUN W W, WANG M M, ZHAO J, et al. Sulindac selectively induces autophagic apoptosis of GABAergic neurons and alters motor behaviour in zebrafish [J]. Nature Communications,2023,14(1): 5351.
[37] HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology [J]. Plos One, 2013, 8(12): e83922.
[38] MARTINI M,DE SANTIS M C,BRACCINI L,et al. PI3K/AKT signaling pathway and cancer: an updated review [J]. Annals of Medicine,2014,46(6): 372-383.
[39] XUAN F F, JIAN J, QIN F Z, et al. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats [J]. Drug Design, Development and Therapy, 2015, 9: 5933-5945.
[40] JAESCHKE H, DUAN L, AKAKPO J Y, et al. The role of apoptosis in acetaminophen hepatotoxicity [J]. Food and Chemical Toxicology, 2018,118: 709-718.
[41] MCGILL M R, SHARPE M R, WILLIAMS C D, et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation [J]. Journal of Clinical Investigation, 2012, 122(4): 1574-1583.