|本期目录/Table of Contents|

[1]张巧云,姚敦璠,汪国威*,等.2,7-二溴咔唑致肝损伤分子机制的网络毒理学辅助实验探讨[J].武汉工程大学学报,2024,46(05):534-542.[doi:10.19843/j.cnki.CN42-1779/TQ.202405004]
 ZHANG Qiaoyun,YAO Dunfan,WANG Guowei*,et al.Network toxicology-assisted experiments to explore2,7-dibromocarbazole’s hepatotoxic mechanism[J].Journal of Wuhan Institute of Technology,2024,46(05):534-542.[doi:10.19843/j.cnki.CN42-1779/TQ.202405004]
点击复制

2,7-二溴咔唑致肝损伤分子机制的
网络毒理学辅助实验探讨
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年05期
页码:
534-542
栏目:
生物与环境工程
出版日期:
2024-10-28

文章信息/Info

Title:
Network toxicology-assisted experiments to explore
2,7-dibromocarbazole’s hepatotoxic mechanism
文章编号:
1674 - 2869(2024)05 - 0534 - 09
作者:
张巧云1姚敦璠2汪国威*1侯存闯1付 强1黄梦瑶1
1. 武汉工程大学绿色化工过程教育部重点实验室,环境生态与生物工程学院,湖北 武汉 430205;2. 湖北科技学院医学部药学院, 湖北 咸宁 437100
Author(s):
ZHANG Qiaoyun1 YAO Dunfan2 WANG Guowei*1 HOU Cunchuang1 FU Qiang1 HUANG Mengyao1
1. Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological
Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
关键词:
卤代咔唑肝脏毒性RXRα靶点PI3K-Akt 信号通路
Keywords:
polyhalogenated carbazoles hepatotoxicity RXRα PI3K-Akt signaling pathway
分类号:
X131;R99
DOI:
10.19843/j.cnki.CN42-1779/TQ.202405004
文献标志码:
A
摘要:
环境污染物2,7-二溴咔唑(27-BCZ)显著引发肝脏毒性效应,研究其分子机制将在生态风险评估和毒性靶向治疗药物的开发中起到重要作用。证实0.05和0.15 μmol/L的27-BCZ可致斑马鱼肝损伤,引起肝脏ALT和AST水平升高,肝脏部分细胞溶解、胞核固缩和变性等。网络毒理学方法预测显示:27-BCZ致肝损伤的关键靶点为RXRα、MAPK1、HSP90AA1等,其机制主要涉及PI3K-Akt信号通路。分子对接表明27-BCZ与PI3K-Akt信号通路相关的核心靶点RXRα结合活性强。为验证网络毒理学预测的可靠性,用RT-qPCR检测肝组织PI3K-Akt信号通路介导凋亡相关基因的表达水平,结果显示:27-BCZ可显著降低肝脏pi3k、akt和bcl-2基因的表达水平,升高凋亡相关的bax和caspase 3基因的表达水平,这种降低或升高的趋势随着暴露浓度的升高进一步增强。综合预测与实验结果发现,27-BCZ致肝损伤可能与其下调肝脏PI3K-Akt信号通路引发肝细胞凋亡有关。本研究首次采用网络毒理学方法探究环境污染物的潜在肝脏毒性作用机制,为环境有机污染物毒性机制的研究提供了新的思路与方法。
Abstract:
The environmental pollutant 2,7-dibromocarbazole (27-BCZ) significantly induces liver toxicity, thus identification of its molecular mechanism on liver toxicity play a vital role in ecological risk assessment and the development of therapeutics. This study confirmed that 0.05 μmol/L or 0.15 μmol/L 27-BCZ can induce liver damage in zebrafish due to partial cell lysis, nuclear pyknosis and denaturation, and an increase in ALT and AST in the liver. The network toxicology predicted that the key targets of 27-BCZ in inducing liver damage were RXRα, MAPK1, HSP90AA1, etc., and the mechanisms involved PI3K-Akt signaling pathways. The molecular docking results indicated that the core target RXRα associated with the PI3K-Akt signaling pathway had strong binding activity with 27-BCZ. To verify the feasibility of network toxicology prediction, RT-qPCR was used to detect apoptosis-related genes mediated by the PI3K-Akt signaling pathway in the liver. The results showed that 27-BCZ significantly reduced the transcriptional levels of genes pi3k, akt, and bcl-2, and significantly increased transcriptional levels of genes bax and caspase 3 which are related to cell apoptosis. The trends of decrease or increase were further enhanced with increasing concentration of 27-BCZ. Based on the network toxicological and experimental results, we found that 27-BCZ-induced liver damage may be related to its downregulation of the PI3K-Akt signaling pathway and promotion of liver cell apoptosis. This is the first study that attempted using the network toxicology methods to explore the hepatic toxicity mechanisms of environmental pollutants, which provides new insight into investigation of the toxicity mechanism of environmental organic pollutants.

参考文献/References:

[1] WU Y, TAN H L, SUTTON R, et al. From sediment to top predators: broad exposure of polyhalogenated carbazoles in San Francisco Bay (USA) [J]. Environmental Science and Technology, 2017, 51(4): 2038-2046.

[2] RIDDELL N,JIN U H,SAFE S,et al. Characterization and biological potency of mono- to tetra-halogenated carbazoles [J]. Environmental Science and Technology, 2015, 49(17): 10658-10666.
[3] JI C Y, SHEN C, ZHOU Y X, et al. AhR agonist activity confirmation of polyhalogenated carbazoles (PHCZs) using an integration of in vitro, in vivo, and in silico models [J]. Environmental Science and Technology, 2019, 53(24): 14716-14723.
[4] DUMUR F. Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: simplicity, efficacy [J]. Organic Electronics, 2015, 25: 345-361.
[5] KARON K, LAPKOWSKI M, JUOZAS G. Electrochemical and UV-Vis/ESR spectroelectro-chemical properties of polymers obtained from isomeric 2,7-and 3,6-linked carbazole trimers; influence of the linking topology on polymers properties [J]. Electrochimica Acta, 2014, 123: 176-182.
[6] SUN Y X, YANG L L, ZHENG M H, et al. Industrial source identification of polyhalogenated carbazoles and preliminary assessment of their global emissions [J]. Nature Communications, 2023, 14(1): 3740.
[7] ZHANG M, LI P, WANG Q F, et al. Production of polyhalogenated carbazoles in Marine Red Alga Corallina officinalis: a possible natural source [J]. Environmental Science and Technology,2023,57(16): 6673-6681.
[8] FROMME H, MI W, LAHRZ T, et al. Occurrence of carbazoles in dust and air samples from different locations in Germany [J]. Science of the Total Environment, 2018, 610: 412-418.
[9] GUO J H, LI Z N, RANASINGHE P, et al. Spatial and temporal trends of polyhalogenated carbazoles in sediments of upper Great Lakes: insights into their origin[J]. Environmental Science and Technology, 2017, 51(1): 89-97.
[10] MUMBO J, PANDELOVA M, MERTES F, et al. The fingerprints of dioxin-like bromocarbazoles and chlorocarbazoles in selected forest soils in Germany [J]. Chemosphere, 2016, 162: 64-72.
[11] HU H M, ZHAO M R, GUO Y M, et al. Occurrence, bioaccumulation and potential risk of polyhalogenated carbazoles in marine organisms from the East China Sea [J]. Science of The Total Environment, 2022, 807: 150643.
[12] JIN H B, ZHAO N, HU H M, et al. Occurrence and partitioning of polyhalogenated carbazoles in seawater and sediment from East China Sea [J]. Water Research, 2021, 190: 116717.
[13] JIA Y X, CHENG J, SUN H F, et al. Sediment-water distribution and potential sources of polyhalogenated carbazoles in a coastal river locating at a north metropolis, China [J]. Marine Pollution Bulletin, 2023, 189: 114790.
[14] YANG L, ZHANG H L, LI A, et al. Polyhalogenated carbazoles in freshwater and estuarine sediment from China and the United States: a multi-regional study [J]. Science of the Total Environment, 2021, 788: 147908.
[15] 郭远选, 王静, 周佳, 等. 手性农药的环境行为及毒理学研究进展 [J]. 武汉工程大学学报, 2023, 45(6): 591-598.
[16] FANG M L, GUO J H, CHEN D, et al. Halogenated carbazoles induce cardiotoxicity in developing zebrafish (Danio rerio) embryos [J]. Environmental Toxicology and Chemistry, 2016, 35(10): 2523-2529.
[17] JI C Y, YUE S Q, GU J P, et al. 2,7-Dibromocarbazole interferes with tube formation in HUVECs by altering Ang2 promoter DNA methylation status [J]. Science of the Total Environment, 2019, 697: 134156.
[18] JI C Y, LUO Y K, YANG J W, et al. Polyhalogenated carbazoles induce hepatic metabolic disorders in mice via alteration in gut microbiota [J]. Journal of Environmental Sciences, 2023, 127: 603-614.
[19] XIAO F Y, QIU J H, ZHAO Y. Exploring the potential toxicological mechanisms of Vine Tea on the liver based on network toxicology and transcriptomics [J]. Frontiers in Pharmacology, 2022, 13: 855926.
[20] LIU C X, ZHANG C N, WANG W X, et al. Integrated metabolomics and network toxicology to reveal molecular mechanism of celastrol induced cardiotoxicity [J]. Toxicology and Applied Pharmacology, 2019, 383: 114785.
[21] 杨长游, 汤婷婷, 刘秋美, 等. 基于网络药理学探究防己茯苓汤治疗肾病综合征的成分与机制 [J]. 武汉工程大学学报, 2023, 45(5): 496-505.
[22] HUANG M Y, HOU C C, ZHANG Q Y, et al. Tissue-specific accumulation, depuration and histopathological effects of 3,6-dichlorocarbazole and 2,7-dibromocarbazole in adult zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2024, 266: 106803.
[23] WANG X, SHEN Y H, WANG S W, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database [J]. Nucleic Acids Research, 2017, 45(W1): W356-W360.
[24] 孙雅馨, 秦红岩, 臧凯宏, 等. 黄药子致肝脏损伤的网络毒理学分析及验证 [J]. 中国现代应用药学, 2021, 38(24): 3057-3063.
[25] 郭秀欢, 雷艳, 黄宏威, 等. 基于UPLC-Q-TOF-MS/MS和网络毒理学的商陆致肝损伤潜在毒性成分及作用机制探讨 [J]. 药物评价研究, 2023, 46(1): 37-49.
[26] 张林, 王停, 徐子瑛, 等. 基于网络毒理学预测和细胞生物学验证的淫羊藿潜在肝毒性成分与机制研究 [J]. 中国中药杂志, 2021, 46(10): 2413-2423.
[27] LI S, XIE J, ZHANG D F, et al. Lycopene abolishes typical polyhalogenated carbazoles (PHCZs)-induced hepatic injury in yellow catfish (Pelteobagrus fulvidraco): Involvement of ROS/PI3K-AKT/NF-κB signaling [J]. Fish Shellfish Immunol, 2023, 139: 108897.
[28] LI Y Y, LIAO H K, YAO H Y. Prevalence of antibiotic resistance genes in air-conditioning systems in hospitals, farms, and residences [J]. International Journal of Environmental Research and Public Health, 2019, 16(5): 683.
[29] GONG L H, ZHOU H L, WANG C, et al. Hepatoprotective effect of forsythiaside a against acetaminophen-induced liver injury in zebrafish: Coupling network pharmacology with biochemical pharmacology [J]. Journal of Ethnopharmacology, 2021, 271: 113890.
[30] YU Z L, JV Y N, CAI L, et al. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90 [J]. Toxicology and Applied Pharmacology, 2019, 371: 63-73.
[31] ZHU Y P, JING L, LI X Y, et al. Decabromodiphenyl ether disturbs hepatic glycolipid metabolism by regulating the PI3K/AKT/GLUT4 and mTOR/PPARγ/RXRα pathway in mice and L02 cells [J]. Science of the Total Environment, 2021, 763:142936.
[32] QUAN X J, LIANG C L, SUN M Z, et al. Overexpression of steroid receptor coactivators alleviates hyperglycemia-induced endothelial cell injury in rats through activating the PI3K/Akt pathway [J]. Acta Pharmacologica Sinica, 2019, 40(5): 648-657.
[33] JENG K S, LU S J, WANG C H, et al. Liver fibrosis and inflammation under the control of ERK2 [J]. International Journal of Molecular Sciences, 2020, 21(11): 3796.
[34] ZHANG M Y, MA L J, JIANG L, et al. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction [J]. Journal of Ethnopharmacology, 2023, 310: 116422.
[35] ZHANG R, LI H, ZHANG S S, et al. RXRα provokes tumor suppression through p53/p21/p16 and PI3K-AKT signaling pathways during stem cell differentiation and in cancer cells [J]. Cell Death and Disease, 2018, 9: 532.
[36] SUN W W, WANG M M, ZHAO J, et al. Sulindac selectively induces autophagic apoptosis of GABAergic neurons and alters motor behaviour in zebrafish [J]. Nature Communications,2023,14(1): 5351.
[37] HSIN K Y, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology [J]. Plos One, 2013, 8(12): e83922.
[38] MARTINI M,DE SANTIS M C,BRACCINI L,et al. PI3K/AKT signaling pathway and cancer: an updated review [J]. Annals of Medicine,2014,46(6): 372-383.
[39] XUAN F F, JIAN J, QIN F Z, et al. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats [J]. Drug Design, Development and Therapy, 2015, 9: 5933-5945.
[40] JAESCHKE H, DUAN L, AKAKPO J Y, et al. The role of apoptosis in acetaminophen hepatotoxicity [J]. Food and Chemical Toxicology, 2018,118: 709-718.
[41] MCGILL M R, SHARPE M R, WILLIAMS C D, et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation [J]. Journal of Clinical Investigation, 2012, 122(4): 1574-1583.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-05-09
基金项目:国家自然科学基金 (21806047、41902314);湖北省教育厅科学基金 (Q20211512);武汉工程大学研究生教育创新基金 (CX2022567)
作者简介:张巧云,硕士研究生。Email: [email protected]
*通信作者:汪国威,博士,副教授。Email: [email protected]
引文格式:张巧云,姚敦璠,汪国威,等. 2,7-二溴咔唑致肝损伤分子机制的网络毒理学辅助实验探讨[J]. 武汉工程大学学报,2024,46(5):534-542.
更新日期/Last Update: 2024-10-26