|本期目录/Table of Contents|

[1]陈林根*,冯辉君,谢志辉,等.能量利用系统的构形热力学优化理论——研究进展与太阳能驱动热电冷氢联产系统优化应用初探[J].武汉工程大学学报,2024,46(05):543-563.[doi:10.19843/j.cnki.CN42-1779/TQ.202405018]
 CHEN Lingen*,FENG Huijun,XIE Zhihui,et al.Constructal thermodynamic optimization theory for energy utilizationsystems[J].Journal of Wuhan Institute of Technology,2024,46(05):543-563.[doi:10.19843/j.cnki.CN42-1779/TQ.202405018]
点击复制

能量利用系统的构形热力学优化理论
——研究进展与太阳能驱动热电冷氢联产系统优化应用初探
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年05期
页码:
543-563
栏目:
机电与信息工程
出版日期:
2024-10-28

文章信息/Info

Title:
Constructal thermodynamic optimization theory for energy utilization
systems
文章编号:
1674 - 2869(2024)05 - 0543 - 21
作者:
陈林根*1345冯辉君1345谢志辉2夏少军2戈延林1345 刘 鹏1345 章先涛1345
1. 武汉工程大学化工装备强化与本质安全湖北省重点实验室,湖北 武汉 430205;
2. 海军工程大学动力工程学院, 湖北 武汉 430033;
3. 武汉工程大学湖北省绿色化工装备工程技术研究中心,湖北 武汉 430205;
4. 武汉工程大学热科学与动力工程研究所, 湖北 武汉 430205;
5. 武汉工程大学机电工程学院, 湖北 武汉 430205
Author(s):
CHEN Lingen*1345 FENG Huijun1345 XIE Zhihui2 XIA Shaojun2GE Yanlin1345
LIU Peng1345 ZHANG Xiantao1345
1. Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety,
Wuhan Institute of Technology, Wuhan 430205, Cihna;
2. School of Power Engineering, Naval University of Engineering, Wuhan 430033, Cihna;
3. Hubei Provincial Engineering Technology Research Centre of Green Chemical Equipment, Wuhan Institute of Technology, Wuhan 430205, Cihna;......
关键词:
构形设计 有限时间热力学 构形热力学优化 太阳能 多联产系统
Keywords:
constructal design finite time thermodynamics constructal thermodynamic optimization solar energy polygeneration system
分类号:
TK121
DOI:
10.19843/j.cnki.CN42-1779/TQ.202405018
文献标志码:
A
摘要:
首先介绍了有限时间热力学、构形设计和构形热力学优化等热学优化新理论的起源和最新研究进展;其次介绍了这些新理论在热力循环和部件性能优化中的应用研究进展;然后基于能量的高效梯级利用,提出了基于太阳能和燃料补能的能源供给方式,集成燃气轮机循环、超临界二氧化碳布雷顿循环、有机朗肯循环、吸收式制冷循环和制氢过程,建立太阳能驱动热电冷氢联产系统新构型;最后对此联产系统新构型的构形热力学优化作了初步探讨。核心是围绕联产系统的“热-电-冷-氢”协同优化机理及调控机制、热力部件“流-结构-性能”的耦合演化规律与传热和热功转换强化机理、联产系统的能量高效梯级利用与多参数构形热力学优化三个关键科学问题,考虑子循环串/并/混联三种模式,综合运用理论解析、数值计算和实验验证的方法,开展联产系统的有限时间热力学优化、热力部件的构形设计、联产系统的构形热力学优化、三种联产系统优化结果的综合比较,实现联产系统热力部件与热力循环性能的一体化全局优化,促进形成一种多联产总能系统能量梯级利用优化理论的思路与框架,服务“双碳”战略。
Abstract:
Firstly, this paper introduces the origin and recent research progress of new thermal optimization theories such as finite time thermodynamics, constructal design and constructal thermodynamic optimization. Secondly, the applications and research progress of these new theories in performance optimizations for thermodynamic cycles and thermal components are introduced. Then, based on the efficient cascade utilization of energy, this paper proposes an energy supply method based on solar energy and fuel replenishment, integrates gas turbine cycle, supercritical carbon dioxide Brayton cycle, organic Rankine cycle, absorption refrigeration cycle and hydrogen production process, and establishes a new configuration of solar-driven polygeneration system combining heating, power, cooling and hydrogen production. Finally, constructal thermodynamic optimization for the new configuration of polygeneration system is discussed preliminarily. The core is to focus on three key scientific issues, including the "heating-power-cooling-hydrogen production" coordinative optimization mechanism and regulation mechanism of polygeneration system, the coupling evolution law of "flow-structure-performance" and the enhancement mechanism of heat transfer and thermal and work conversion of thermal components, as well as the efficient cascade utilization of energy and multi-parameter constructal thermodynamic optimizations for the polygeneration systems. Considering the series/parallel/series-parallel coupling modes of sub-cycles, finite time thermodynamic optimizations for the polygeneration systems, the constructal designs for thermal components, the constructal thermodynamic optimizations for the polygeneration systems, and the comprehensive comparisons of the optimization results for the three polygeneration systems will be carried out by means of theoretical analyses, numerical calculations and experimental verification. The integrated global performance optimizations of thermal components and thermodynamic cycles for the polygeneration systems will be achieved. The formation of the idea and framework of energy cascade utilization optimization theory for polygeneration total energy systems will be promoted to serve the "double carbon" strategy.

参考文献/References:

[1] 金红光, 宣益民, 何雅玲, 等. 工程热物理学科与能源可持续发展[J]. 中国科学: 技术科学, 2020, 50(10): 1245-1251.

[2] COLAKOGLU M, DURMAYAZ A. Energy, exergy and environmental-based design and multiobjective optimization of a novel solar-driven multi-generation system [J]. Energy Conversion and Management, 2021, 227: 113603.
[3] CAO Y, HABIBI H, ZOGHI M, et al. Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and parametric study [J]. Energy, 2021, 236: 121432.
[4] ALROBAIAN A A. Energy, exergy, economy, and environmental (4E) analysis of a multi-generation system composed of solar-assisted Brayton cycle, Kalina cycle, and absorption chiller [J]. Applied Thermal Engineering, 2022, 204: 117988.
[5] KHANMOHAMMADI S, KIZILKAN O, MUSHARAVATI F. Comparative analyses of a novel solar tower assisted multi-generation system with re-compression CO2 power cycle, thermoelectric generator, and hydrogen production unit [J]. International Journal of Hydrogen Energy, 2022, 47(62): 25984-25999.
[6] KHANMOHAMMADI S, RAZI S, DELPISHEH M, et al. Thermodynamic modeling and multi-objective optimization of a solar-driven multi-generation system producing power and water [J]. Desalination, 2023, 545: 116158.
[7] CURZON F L, AHLBORN B. Efficiency of a Carnot engine at maximum power output [J]. American Journal of Physics, 1975, 43(1): 22-24.
[8] CHEN L G, WU C, SUN F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems [J]. Journal of Non-Equilibrium Thermodynamics, 1999, 24(4):327-359.
[9] 陈林根. 不可逆过程和循环的有限时间热力学分析[M]. 北京: 高等教育出版社, 2005.
[10] ANDRESEN B. Current trends in finite-time thermodynamics [J]. Angewandte Chemie (International Edition), 2011, 50(12): 2690-2704.
[11] ANDRESEN B, SALAMON P. Future perspectives of finite-time thermodynamics [J]. Entropy, 2022, 24(5): 690.
[12] BEJAN A. Constructal-theory network of conducting paths for cooling a heat generating volume [J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 799-816.
[13] 陈林根. 构形理论及其应用的研究进展[J]. 中国科学: 技术科学, 2012, 42(5): 505-524.
[14] BEJAN A. The principle underlying all evolution, biological, geophysical, social and technological [J]. Philosophical Transactions of the Royal Socity A: Mathematical, Physical and Engineering Sciences, 2023, 381(2252): 20220288.
[15] CHEN L G, FENG H J, XIE Z H, et al. Progress of constructal theory in China over the past decade [J]. International Journal of Heat and Mass Transfer, 2019, 130: 393-419.
[16] CHEN L G, YANG A B, FENG H J, et al. Constructal design progress for eight types of heat sinks [J]. Science China: Technological Sciences, 2020, 63(6) 879-911.
[17] CHEN L G, WU W J, FENG H J. Constructal Design for Heat Conduction [M]. London: Book Publisher International, 2021.
[18] 陈林根, 冯辉君, 吴志祥, 等. 船海用蒸汽动力装置构形优化理论研究进展[J]. 中国科学: 技术科学, 2022, 52(5): 727-754.
[19] MOUTIER J. éLéMents de thermodynamique [M]. Gauthier-Villars: Paris, France, 1872.
[20] REITLINGER H B. Sur l’utilisation de la chaleur dans les machines a feu [M]. Liege: Vaillant-Carmanne: 1929.
[21] NOVIKOV II. The efficiency of atomic power stations (a review) [J]. Atommaya Energiya, 1957, 3: 409-412.
[22] CHAMBADAL P. Les Centrales Nuclearies[M]. Paris: Armand Colin, 1957.
[23] BEJAN A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes [J]. Journal of Applied Physics, 1996, 79(3): 1191-1218.
[24] DURMAYAZ A, SOGUT O S, SAHIN B, et al. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics [J]. Progress Energy & Combustion Science, 2004, 30(2): 175-217.
[25] SIENIUTYCZ S. Complexity and complex chemo-electric systems [M]. Amsterdam: Elsevier, 2021.
[26] CHEN L G, GE Y L. Finite time thermodynamic optimization for air standard thermal power cycles [M]. London: Book Publisher International, 2023.
[27] 陈林根, 夏少军. 不可逆过程广义热力学动态优化研究进展 [J].中国科学: 技术科学, 2019, 49(9): 981-1022.
[28] 陈林根, 夏少军, 冯辉君. 不可逆循环的广义热力学动态优化研究进展 [J].中国科学: 技术科学, 2019, 49(11): 1223-1267.
[29] 陈林根, 李俊. 两热源循环热力学优化理论[M]. 北京: 科学出版社, 2020.
[30] 刘存, 殷勇, 杨晗, 等. 不可逆量子斯特林热泵循环性能分析与优化 [J]. 武汉工程大学学报, 2021, 43(2): 232-236.
[31] 魏轩宇, 殷勇, 汪浩, 等. 量子卡诺热机有效功率优化[J]. 武汉工程大学学报, 2023, 45(3): 312-318.
[32] BEJAN A. Street network theory of organization in nature [J]. Journal of Advanced Transportation, 1996, 30(2): 85-107.
[33] 陈林根, 冯辉君. 流动和传热传质过程的多目标构形优化[M]. 北京: 科学出版社, 2016.
[34] LORENTE S. Vascular systems for the thermal and hygric management [J]. Advances in Heat Transfer, 2021, 53: 159-185.
[35] BEJAN A. Evolutionary design: heat and fluid flow together [J]. International Communications in Heat and Mass Transfer, 2022, 132: 105924.
[36] BEJAN A. Constructal design evolution versus topology optimization [J]. International Communications in Heat and Mass Transfer, 2023, 141: 106567.
[37] WU Z X, FENG H J, CHEN L G, et al. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle [J]. Energy Conversion and Management, 2020, 210: 112727.
[38] FENG H J, WU Z X, CHEN L G, et al. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system [J]. Energy Conversion and Management, 2021, 227: 113585.
[39] WU Z X, CHEN L G, FENG H J, et al. Constructal thermodynamic optimization for a novel Kalina-organic Rankine combined cycle to utilize waste heat [J]. Energy Reports, 2021, 7: 6095-6106.
[40] GANJEHKAVIRI A, MOHD JAAFAR M N. Multi-objective particle swarm optimization of flat plate solar collector using constructal theory [J]. Energy, 2020, 194: 116846.
[41] JATAU T, BELLO-OCHENDE T. Constructal design of flat plate solar collector [J]. Proceedings of the Romanian Academy Series A, 2018, 19: 160-165.
[42] 石俊朝, 冯辉君, 陈林根, 等. 太阳能海洋热能转换系统中平板集热器构形设计[J]. 中国科学: 技术科学, 2022, 52: 403-414.
[43] GAO S, WANG Y J, LI Y, et al. Performance analysis of S-CO2 tube with high non-uniform heat flux:thermal-fluid-structural evaluation and optimization [J]. Applied Thermal Engineering, 2023, 231: 120849.
[44] LIU P, WU J F, CHEN L G, et al. Numerical analysis and multi-objective optimization design of parabolic trough receiver with ribbed absorber tube [J]. Energy Reports, 2021, 7: 7488-7503.
[45] MERCHáN R P, SANTOS M J, MEDINA A, et al. High temperature central tower plants for concentrated solar power: 2021 overview [J]. Renewable and Sustainable Energy Reviews, 2022, 155:111828.
[46] HE Y L, QIU Y, WANG K, et al. Perspective of concentrating solar power [J]. Energy, 2020, 198: 117373.
[47] YU Q, FU P, YANG Y H, et al. Modeling and parametric study of molten salt receiver of concentrating solar power tower plant [J]. Energy, 2020, 200:117505.
[48] WANG W Q, QIU Y, LI M J, et al. Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower [J]. Applied Energy, 2020, 272: 115079.
[49] MARTINEK J, JAPE S, TURCHI C S. Evaluation of external tubular configurations for a high-temperature chloride molten salt solar receiver operating above 700?°C [J]. Solar Energy, 2021, 222:115-128.
[50] GENTILE G, PICOTTI G, BINOTTI M, et al. A comprehensive methodology for the design of solar tower external receivers [J]. Renewable and Sustainable Energy Reviews, 2024, 193:114153.
[51] LE ROUX W G, BELLO-OCHENDE T, MEYER J P. A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle [J]. Renewable and Sustainable Energy Reviews, 2013, 28: 677-690.
[52] 佐藤豪. 燃气轮机循环理论[M]. 北京: 机械工业出版社, 1983.
[53] GOODARZI M. Comparative energy analysis on a new regenerative Brayton cycle [J]. Energy Conversion and Management, 2016, 120: 25-31.
[54] OLUMAYEGUN O, WANG M, KELSALL G. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR) [J]. Applied Energy, 2017, 191: 436-453.
[55] LIU H Q, CHI Z R, ZANG S S. Optimization of a closed Brayton cycle for space power systems [J]. Applied Thermal Engineering, 2020, 179: 115611.
[56] CHEN L G, WANG W H, SUN F R, et al. Closed intercooled regenerator Brayton-cycle with constant-temperature heat reservoirs [J]. Applied Energy, 2004, 77(4): 429-446.
[57] 王文华, 陈林根, 戈延林, 等. 燃气轮机循环有限时间热力学研究新进展[J]. 热力透平, 2012, 41(3): 171-178, 208.
[58] NASERIAN M M, FARAHAT S, SARHADDI F. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle [J]. Energy Conversion and Management, 2016, 117: 95-105.
[59] KAUSHIK S C, KUMAR R, ARORA R. Thermo-economic optimization and parametric study of an irreversible regenerative Brayton cycle [J]. Journal of Thermal Engineering, 2016, 2(4): 861-870.
[60] CHANDRAMOULI R, RAVI KIRAN SASTRY G, GUGULOTHU S K, et al. Multi-objective optimization of thermo-ecological criteria-based performance parameters of reheat and regenerative Braysson cycle [J]. Transactions of the ASME, Journal of Energy Resources Technology, 2021, 143(7): 072106.
[61] PRAJAPATI P, PATEL V, RAJA B D, et al. Thermal efficiency and specific work optimization of combined Brayton and inverse Brayton cycle: a multi-objective approach [J]. Thermal Science and Engineering Progress, 2023, 37: 101624.
[62] ROMANO L F R, RIBEIRO G B. Optimization of a heat pipe-radiator assembly coupled to a recuperated closed Brayton cycle for compact space power plants [J]. Applied Thermal Engineering, 2021, 196: 117355.
[63] TANG C Q, CHEN L G, FENG H J, et al. Four-objective optimization for an improved irreversible closed modified simple Brayton cycle [J]. Entropy, 2021, 23(3): 282.
[64] QIU X F, CHEN L G, GE Y L, et al. Efficient power analysis and five-objective optimization of a simple endoreversible closed Brayton cycle [J]. Case Studies in Thermal Engineering, 2022, 39: 102415.
[65] CHEN L G, FENG H J, GE Y L, et al. Power and efficiency optimizations for an open cycle two shaft gas turbine power plant [J]. Propulsion and Power Research, 2023, 12(4): 457-466.
[66] 廖吉香, 刘兴业, 郑群, 等. 超临界CO2发电循环特性分析[J]. 热能动力工程, 2016, 31(5): 40-46.
[67] XIN T, XU C, YANG Y. Thermodynamic analysis of a novel supercritical carbon dioxide Brayton cycle based on the thermal cycle splitting analytical method [J]. Energy Conversion and Management, 2020, 225: 113458.
[68] WANG S, WU C, LI J. Exergoeconomic analysis and optimization of single-pressure single-stage and multi-stage CO2 transcritical power cycles for engine waste heat recovery: a comparative study [J]. Energy, 2018, 142: 559-577.
[69] NA S I, KIM M S, BAIK Y J, et al. Optimal allocation of heat exchangers in a supercritical carbon dioxide power cycle for waste heat recovery [J]. Energy Conversion and Management, 2019, 199: 112002.
[70] 夏少军, 金晴龙, 吴志祥. 回热型超临界二氧化碳布雷顿循环?效率分析与优化[J]. 华南理工大学学报(自然科学版), 2022, 50(2): 111-120 .
[71] 金晴龙, 夏少军, 吴志祥. 回热型S-CO2循环基本性能分析与优化[J]. 热能动力工程, 2022, 37(7): 15-26.
[72] JIN Q L, XIA S J, LI P L, et al. Multi-objective performance optimization of regenerative S-CO2 Brayton cycle based on neural network prediction [J]. Energy Conversion and Management: X, 2022, 14:100203.
[73] 金晴龙, 夏少军, 王超. 预热型S-CO2循环?性能分析与优化[J]. 中国电机工程学报, 2023, 43(3): 1072-1083.
[74] JIN Q L, XIA S J, XIE T C. Ecological function analysis and optimization of recompression S-CO2 cycle for gas turbine waste heat recovery [J]. Entropy, 2022, 24(5):723.
[75] JIN Q L, XIA S J, CHEN L G. A modified recompression S-CO2 Brayton cycle and its thermodynamic optimization [J]. Energy, 2023, 263(Part E): 126015.
[76] LI J, PENG X, YANG Z, et al. Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: a review [J]. Applied Energy, 2022, 311: 118609.
[77] PING X, YANG F B, ZHANG H G, et al. Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment [J]. Applied Energy,2023,348: 121569.
[78] ZHANG J, HU X D, WU D, et al. A comparative study on design and performance evaluation of organic Rankine cycle (ORC) under different two-phase heat transfer correlations [J]. Applied Energy, 2023, 350: 121724.
[79] MANA A A, KAITOUNI S I, KOUSKSOU T, et al. Enhancing sustainable energy conversion: comparative study of superheated and recuperative ORC systems for waste heat recovery and geothermal applications, with focus on 4E performance [J]. Energy, 2023, 284: 128654.
[80] LEE W Y, KIM M, SOHN Y J, et al. Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system [J]. Energy, 2016, 113: 1062-1070.
[81] CHEN W J, FENG H J, CHEN L G, et al. Optimal performance characteristics of subcritical simple irreversible organic Rankine cycle [J]. Journal of Thermal Sciences, 2018, 27(6): 555-562.
[82] FENG H J, CHEN W J, CHEN L G, et al. Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle [J]. Energy Conversion and Management, 2020, 220: 113079.
[83] LIU Q,CHEN R, YANG X L, et al. Thermodynamic analyses of sub- and supercritical ORCs using R1234yf, R236ea and their mixtures as working fluids for geothermal power generation [J]. Energies, 2023, 16(15): 5676.
[84] YANG W H, FENG H J, CHEN L G, et al. Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle [J]. Energy, 2023, 278: 127755.
[85] ZHI L H, HU P, CHEN L X. A novel optimization method for transcritical-subcritical parallel organic Rankine cycle under variable engine loads and cooling water temperature [J]. Case Studies in Thermal Engineering, 2023, 51: 103675.
[86] FENG J S, CHENG X N, YAN Y R, et al. Thermodynamic and thermo-economic analysis, performance comparison and parameter optimization of basic and regenerative organic Rankine cycles for waste heat recovery [J]. Case Studies in Thermal Engineering, 2023, 52: 103816.
[87] 马晓锋, 张舒涵, 何勇. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
[88] 何泽兴, 史成香, 陈志超. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
[89] NI M, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant [J]. Energy Conversion and Management, 2008, 49(10): 2748-2756.
[90] NIEMINEN J, DINCER I, NATERER G. Comparative performance analysis of PEM and solid oxide steam electrolysers [J]. International Journal of Hydrogen Energy, 2010, 35(20): 10842-10850.
[91] 张后程. 电解水制氢和燃料电池系统的性能特性与参数优化设计[D]. 厦门: 厦门大学, 2012.
[92] GARCíA-VALVERDE R, ESPINOSA N, URBINA A. Simple PEM water electrolyser model and experimental validation [J]. International Journal of Hydrogen Energy, 2012, 37(2): 1927-1938.
[93] ABDOLLAHIPOUR A, SAYYAADI H. Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems [J]. Energy, 2022, 260: 124944.
[94] FEIDT M. Evolution of thermodynamic modelling for three and four heat reservoirs reverse cycle machines: a review and new trends [J]. International Journal of Refrigeration, 2013, 36(1): 8-23.
[95] XU Z Y, WANG R Z. Absorption refrigeration cycles: categorized based on the cycle construction [J]. International Journal of Refrigeration, 2016, 62: 114-136.
[96] AHMADI M H, AHMADI M A. Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGA-II [J]. Renewable and Sustainable Energy Reviews, 2016, 60: 784-794.
[97] FEIDT M. Thermodynamics applied to reverse cycle machines, a review [J]. International Journal of Refrigeration, 2010, 33(7): 1327-1342.
[98] QIN X Y, CHEN L G, GE Y L, et al. Finite time thermodynamic studies on absorption thermodynamic cycles: a state of the arts review [J]. Arabian Journal for Science and Engineering,2013, 38(3): 405-419.
[99] MEDJO NOUADJE B A, NGOUATEU WOUAGFACK P A, TCHINDA R. Finite-time thermodynamics optimization of an irreversible parallel flow double-effect absorption refrigerator [J]. International Journal of Refrigeration, 2016, 67: 433-444.
[100] QIN X Y,ZHANG K, CHEN L G, et al. Ecological and ECOP performances of an irreversible two-stage absorption refrigeration cycle [C]// Proceedings of 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFA2017), Portoroz, Slovenia, July 17-19,2017:40-45.
[101] FOSSI NEMOGNE R L, NGOUATEU WOUAGFACK P A, MEDJO NOUADJE B A, et al. Multi-objective optimization and analysis of performance of a four-temperature-level multi-irreversible absorption heat pump [J]. Energy Conversion and Management, 2021, 234: 113967.
[102] ZHAI C,WU W. Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources [J]. Energy, 2022, 239(Part B): 122193.
[103] CANBOLAT A S, BADEMLIOGLU A H, ARSLANOGLU N, et al. Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods [J]. Journal of Cleaner Production, 2019, 229: 874-885.
[104] FELLAH A, BOUKHCHANA Y, BRAHIM A B. Quasi-real performances of an irreversible solar absorption refrigeration cycle [J]. International Journal of Refrigeration, 2019, 100: 21-26.
[105] KEUNE G F, NGOUATEU WOUAGFACK P A, TCHINDA R. Local stability analysis of an irreversible absorption refrigerator powered by a wood boiler [J]. International Journal of Refrigeration, 2020, 115: 83-95.
[106] YE Z L, HOLUBEC V. Maximum efficiency of absorption refrigerators at arbitrary cooling power [J]. Physical Review E, 2021, 103(5): 052125.
[107] MOHANTA S, SARYAL S, AGARWALLA B K. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators [J]. Physical Review E, 2022, 105(3): 034127.
[108] ABBAS N Y, MUSTAFA A W, ASKERA M K A A. Constructal design of heat exchangers: a review [J]. International Journal of Advances in Engineering and Management, 2022, 3(12):27-40.
[109] DA SILVA A K, LORENTE S, BEJAN A. Constructal multi-scale tree-shaped heat exchanger [J]. Journal of Applied Physics, 2004, 96(3): 1709-1718.
[110] ZIMPAROV V D, DA SILVA A K, BEJAN A. Constructal tree-shaped parallel flow heat exchangers [J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4558-4566.
[111] 冯辉君, 陈林根, 谢志辉, 等. 基于火积理论的H型多尺度换热器构形优化[J]. 中国科学: 技术科学, 2013, 43(2): 169-177.
[112] BEJAN A, ALALAIMI M, SABAU A S, et al. Entrance-length dendritic plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 2017, 114: 1350-1356.
[113] NEJAD A H, EKICI K, SABAU A S, et al. Counter cross-flow evaporator geometries for supercritical organic Rankine cycles [J]. International Journal of Heat and Mass Transfer, 2019, 135: 425-435.
[114] FENG H J, CHEN L G, WU Z X, et al. Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process [J]. International Journal of Heat and Mass Transfer, 2019, 131: 750-756.
[115] CAI C G, FENG H J, CHEN L G, et al. Constructal design of a shell-and-tube evaporator with ammonia-water working fluid [J]. International Journal of Heat and Mass Transfer, 2019, 135: 541-547.
[116] WU Z X, FENG H J, CHEN L G, et al. Performance optimization of a condenser in OTECS based on constructal theory and multi-objective genetic algorithm [J]. Entropy, 2020, 22: 641.
[117] 陈林根, 冯辉君, 谢卓君, 等. 基于火积理论的船用锅炉构形优化[J]. 中国科学: 技术科学, 2021, 51(10): 1208-1218.
[118] LIU H Y, XIE Z H, LU Z Q, et al. Constructal optimization of double-layer asymmetric flower baffles [J]. Energy, 2023, 280: 128254.
[119] YAO Y, LIU H, GUO X, et al. Numerical and experimental investigations of the heat transfer and fatigue life of a new W-type mini microchannel heat exchanger [J]. International Journal of Heat and Mass Transfer, 2023, 212: 124293.
[120] FAIZAN M, ALMERBATI A. Evolutionary design of compact counterflow heat exchanger [J]. Transactions of the ASME, Journal of Energy Resources Technology, 2023, 145(3): 032102.
[121] MUSTAFA A W, SULAIMAN U A, AWAD M M. Constructal design of crossflow heat exchanger with concentric and eccentric circular fins [J]. Heat Transfer, 2024, doi: 10.1002/htj.22989.
[122] YU M J, XU L, CUI H C, et al. Characteristics and potential of a novel inclined-flow Stirling regenerator constructed by sinusoidal corrugated channels [J]. Energy, 2024, 288: 129686.
[123] WANG E H, PENG N J. A review on the preliminary design of axial and radial turbines for small-scale organic Rankine cycle [J]. Energies, 2023, 16(8): 3423.
[124] DU Y, YANG Y, HU D S, et al. Off-design performance comparative analysis between basic and parallel dual-pressure organic Rankine cycles using radial inflow turbines [J]. Applied Thermal Engineering, 2018, 138: 18-34.
[125] SUN Q X, WANG Y X, CHENG Z Y, et al. Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source [J]. Renewable Energy, 2020, 147: 2822-2832.
[123] AL JUBORI A M, AL-DADAH R, MAHMOUD S. An innovative small-scale two-stage axial turbine for low-temperature organic Rankine cycle [J]. Energy Conversion and Management, 2017, 144: 18-33.
[127] JEONG J S, LEE S W. Full aerodynamic loss data for efficient squealer tip design in an axial flow turbine [J]. Energy, 2020, 206: 118170.
[128] KIM Y S, LORENTE S, BEJAN A. Distribution of size in steam turbine power plants [J]. International Journal of Energy Research, 2009, 33(11): 989-998.
[129] BEYENE A, PEFFLEY J. Constructal theory, adaptive motion, and their theoretical application to low-speed turbine design[J]. Journal of Energy Engineering, 2009, 135(4): 112-118.
[130] STANESCU G, BARBU E, VILAG V, et al. Constructal approach on the feasibility of compressed air temperature control by evaporative cooling in gas turbine power plants [J]. Proceedings of the Romanian Academy, Series A, Mathematics,Physics,Technical Science, Information Science, 2018, 18(Special issue): 201-206.
[131] WU Z X, FENG H J, CHEN L G, et al. Optimal design of dual-pressure turbine in OTEC system based on constructal theory [J]. Energy Conversion and Management, 2019, 201: 112179.
[132] CHEN L G, WU Z X, FENG H J, et al. Constructal design for dual-pressure axial-flow turbine in organic Rankine cycle [J]. Energy Reports, 2022, 8: 45-55.
[133] WANG Z, MA Y, CAO M L, et al. Energy, exergy, exergoeconomic, environmental (4E) evaluation and multi-objective optimization of a novel SOFC-ICE-SCO2-HRSG hybrid system for power and heat generation [J]. Energy Conversion and Management, 2023, 291: 117332.
[134] MEHRABIAN M J, MANESH M H K, JEONG D H. 4E and risk assessment of a novel integrated biomass driven polygeneration system based on integrated SCO2-ORC-AD-SOFC- SOEC-PEMFC-PEMEC [J]. Sustainable Energy Technologies and Assessments, 2023, 58: 103317.
[135] YOUSEF M S, SANTANA D. Thermodynamic and exergoeconomic optimization of a new combined cooling and power system based on supercritical CO2 recompression Brayton cycle [J]. Energy Conversion and Management, 2023, 295: 117592.
[136] MUBASHIR W, ADNAN M, ZAMAN M, et al. Thermo-economic evaluation of supercritical CO2 Brayton cycle integrated with absorption refrigeration system and organic Rankine cycle for waste heat recovery [J]. Thermal Science and Engineering Progress, 2023, 44: 102073.
[137] YOUSEF M S, SANTANA D. Energy and exergy analyses of a recompression supercritical CO2 cycle combined with a double-effect parallel absorption refrigeration cycle [J]. Energy Reports, 2023(9):195-201.
[138] BISHAL S S, FAYSAL D F, EHSAN M M, et al. Performance evaluation of an integrated cooling and power system combining supercritical CO2, gas turbine, absorption refrigeration, and organic rankine cycles for waste energy recuperating system [J]. Results in Engineering, 2023, 17:100943.
[139] ZENG R, GAN J J, GUO B X, et al. Thermodynamic performance analysis of solid oxide fuel cell-ombined cooling, heating and power system with integrated supercritical CO2 power cycle -organic Rankine cycle and absorption refrigeration cycle [J]. Energy, 2023, 283:129133.
[140] CHENG K L, LI J H, YU J C, et al. Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: performance comparison and configuration optimization [J]. Energy, 2023, 284:129368.
[141] TAO H, MAMUN K A, ALI A, et al. Performance enhancement of integrated energy system using a PEM fuel cell and thermoelectric generator [J]. International Journal of Hydrogen Energy, 2024, 51 (Part D): 1280-1292.
[142] AMIRI M B, YARI M, RANJBAR F, et al. Waste heat recovery from a flame-assisted fuel cell utilizing recompression supercritical CO2 Brayton and dual-pressure organic Rankine cycles [J]. International Journal of Hydrogen Energy, 2024, 51 (Part D): 1293-1310.
[143] IRANI A S, FATTAHI A. On the combined Brayton-Kalina cycle with PEM hydrogen production: an exergoeconomic analysis and multi-objective optimization with LINMAP decision maker [J]. International Journal of Hydrogen Energy, 2024, 52 (Part A): 289-304.
[144] LI Y Y, YANG Y P. Thermodynamic analysis of a novel integrated solar combined cycle [J]. Applied Energy, 2014, 122: 133-142.
[145] LIU Q B, BAI Z, WANG X H, et al. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems [J]. Energy Conversion and Management, 2016, 122: 252-262.
[146] LINARES J I, ARENAS E, CANTIZANO A, et al. Innovative integrated solar combined cycle: enhancing dispatchability with a partial recuperative gas turbine and supercritical CO2 bottoming cycle, coupled with an ORC[J]. Solar Energy, 2023, 264: 112075.
[147] SHEYKHLOU H, AGHDASH M M, JAFARMADAR S, et al. Multi-aspect prediction of the sensitivity of thermodynamic/thermoeconomic performance metrics of an innovative solar-driven trigeneration system utilizing thermal energy storage [J]. Energy, 2023, 284:128722.
[148] KARTHIKEYAN B,KUMAR G P. Thermoeconomic and optimization approaches for integrating cooling, power, and green hydrogen production in dairy plants with a novel solar-biomass cascade ORC system [J]. Energy Conversion and Management, 2023, 295:117645.
[149] CHEN L G, FENG H J, SUN F R. Exergoeconomic performance optimization for a combined cooling, heating and power generation plant with an endoreversible closed Brayton cycle [J]. Mathematical and Computer Modelling, 2011, 54(11/12): 2785-2801.
[150] FENG H J, CHEN L G, SUN F R. Exergoeconomic optimal performance of an irreversible closed Brayton cycle combined cooling, heating and power plant [J]. Applied Mathematical Modelling, 2011, 35(9): 4661-4673.
[151] YANG B, CHEN L, GE Y L, et al. Exergy performance analyses of an irreversible two-stage intercooled regenerative reheated closed Brayton CHP plant [J]. International Journal of Exergy, 2014, 14(4): 459-483.
[152] YANG B, CHEN L, GE Y L, et al. Finite time exergoeconomic performance of a real intercooled regenerated gas turbine cogeneration plant. Part 2: heat conductance distribution and pressure ratio optimization [J]. International Journal of Low-Carbon Technologies, 2014, 9(4): 262-267.
[153] YANG B, CHEN L, GE Y L, et al. Finite time exergoeconomic performance of a real, intercooled, regenerated gas turbine cogeneration plant. Part 1: model description and parametric analyses [J]. International Journal of Low-Carbon Technologies, 2014, 9(1): 29-37.
[154] CHEN L G, FENG H J, SUN F R. Exergy optimization for irreversible closed Brayton cycle combined cooling, heating and power generation plant [J]. Journal of Energy Institute, 2013, 86(2): 97-106.
[155] YANG B, CHEN L G, SUN F R. Exergy performance optimization of an endoreversible variable-temperature heat reservoirs intercooled regenerated Brayton cogeneration plant [J]. Journal of Energy Institute, 2016, 89(1): 1-11.
[156] CHEN L G, YANG B, FENG H J, et al. Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China’s steelmaking plants [J]. Energy, 2020, 203: 117791.
[157] 国家自然科学基金委员会工程与材料科学部. 工程热物理与能源利用学科发展战略研究报告(2021—2030)[M]. 北京:科学出版社, 2023.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-05-30
基金项目:国家自然科学基金(52171317、51779262)
作者简介:陈林根,博士,教授。Email: [email protected][email protected]
引文格式:陈林根,冯辉君,谢志辉,等. 能量利用系统的构形热力学优化理论——研究进展与太阳能驱动热电冷氢联产系统优化应用初探[J]. 武汉工程大学学报,2024,46(5):543-563.
更新日期/Last Update: 2024-10-28