[2] COLAKOGLU M, DURMAYAZ A. Energy, exergy and environmental-based design and multiobjective optimization of a novel solar-driven multi-generation system [J]. Energy Conversion and Management, 2021, 227: 113603.
[3] CAO Y, HABIBI H, ZOGHI M, et al. Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and parametric study [J]. Energy, 2021, 236: 121432.
[4] ALROBAIAN A A. Energy, exergy, economy, and environmental (4E) analysis of a multi-generation system composed of solar-assisted Brayton cycle, Kalina cycle, and absorption chiller [J]. Applied Thermal Engineering, 2022, 204: 117988.
[5] KHANMOHAMMADI S, KIZILKAN O, MUSHARAVATI F. Comparative analyses of a novel solar tower assisted multi-generation system with re-compression CO2 power cycle, thermoelectric generator, and hydrogen production unit [J]. International Journal of Hydrogen Energy, 2022, 47(62): 25984-25999.
[6] KHANMOHAMMADI S, RAZI S, DELPISHEH M, et al. Thermodynamic modeling and multi-objective optimization of a solar-driven multi-generation system producing power and water [J]. Desalination, 2023, 545: 116158.
[7] CURZON F L, AHLBORN B. Efficiency of a Carnot engine at maximum power output [J]. American Journal of Physics, 1975, 43(1): 22-24.
[8] CHEN L G, WU C, SUN F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems [J]. Journal of Non-Equilibrium Thermodynamics, 1999, 24(4):327-359.
[9] 陈林根. 不可逆过程和循环的有限时间热力学分析[M]. 北京: 高等教育出版社, 2005.
[10] ANDRESEN B. Current trends in finite-time thermodynamics [J]. Angewandte Chemie (International Edition), 2011, 50(12): 2690-2704.
[11] ANDRESEN B, SALAMON P. Future perspectives of finite-time thermodynamics [J]. Entropy, 2022, 24(5): 690.
[12] BEJAN A. Constructal-theory network of conducting paths for cooling a heat generating volume [J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 799-816.
[13] 陈林根. 构形理论及其应用的研究进展[J]. 中国科学: 技术科学, 2012, 42(5): 505-524.
[14] BEJAN A. The principle underlying all evolution, biological, geophysical, social and technological [J]. Philosophical Transactions of the Royal Socity A: Mathematical, Physical and Engineering Sciences, 2023, 381(2252): 20220288.
[15] CHEN L G, FENG H J, XIE Z H, et al. Progress of constructal theory in China over the past decade [J]. International Journal of Heat and Mass Transfer, 2019, 130: 393-419.
[16] CHEN L G, YANG A B, FENG H J, et al. Constructal design progress for eight types of heat sinks [J]. Science China: Technological Sciences, 2020, 63(6) 879-911.
[17] CHEN L G, WU W J, FENG H J. Constructal Design for Heat Conduction [M]. London: Book Publisher International, 2021.
[18] 陈林根, 冯辉君, 吴志祥, 等. 船海用蒸汽动力装置构形优化理论研究进展[J]. 中国科学: 技术科学, 2022, 52(5): 727-754.
[19] MOUTIER J. éLéMents de thermodynamique [M]. Gauthier-Villars: Paris, France, 1872.
[20] REITLINGER H B. Sur l’utilisation de la chaleur dans les machines a feu [M]. Liege: Vaillant-Carmanne: 1929.
[21] NOVIKOV II. The efficiency of atomic power stations (a review) [J]. Atommaya Energiya, 1957, 3: 409-412.
[22] CHAMBADAL P. Les Centrales Nuclearies[M]. Paris: Armand Colin, 1957.
[23] BEJAN A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes [J]. Journal of Applied Physics, 1996, 79(3): 1191-1218.
[24] DURMAYAZ A, SOGUT O S, SAHIN B, et al. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics [J]. Progress Energy & Combustion Science, 2004, 30(2): 175-217.
[25] SIENIUTYCZ S. Complexity and complex chemo-electric systems [M]. Amsterdam: Elsevier, 2021.
[26] CHEN L G, GE Y L. Finite time thermodynamic optimization for air standard thermal power cycles [M]. London: Book Publisher International, 2023.
[27] 陈林根, 夏少军. 不可逆过程广义热力学动态优化研究进展 [J].中国科学: 技术科学, 2019, 49(9): 981-1022.
[28] 陈林根, 夏少军, 冯辉君. 不可逆循环的广义热力学动态优化研究进展 [J].中国科学: 技术科学, 2019, 49(11): 1223-1267.
[29] 陈林根, 李俊. 两热源循环热力学优化理论[M]. 北京: 科学出版社, 2020.
[30] 刘存, 殷勇, 杨晗, 等. 不可逆量子斯特林热泵循环性能分析与优化 [J]. 武汉工程大学学报, 2021, 43(2): 232-236.
[31] 魏轩宇, 殷勇, 汪浩, 等. 量子卡诺热机有效功率优化[J]. 武汉工程大学学报, 2023, 45(3): 312-318.
[32] BEJAN A. Street network theory of organization in nature [J]. Journal of Advanced Transportation, 1996, 30(2): 85-107.
[33] 陈林根, 冯辉君. 流动和传热传质过程的多目标构形优化[M]. 北京: 科学出版社, 2016.
[34] LORENTE S. Vascular systems for the thermal and hygric management [J]. Advances in Heat Transfer, 2021, 53: 159-185.
[35] BEJAN A. Evolutionary design: heat and fluid flow together [J]. International Communications in Heat and Mass Transfer, 2022, 132: 105924.
[36] BEJAN A. Constructal design evolution versus topology optimization [J]. International Communications in Heat and Mass Transfer, 2023, 141: 106567.
[37] WU Z X, FENG H J, CHEN L G, et al. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle [J]. Energy Conversion and Management, 2020, 210: 112727.
[38] FENG H J, WU Z X, CHEN L G, et al. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system [J]. Energy Conversion and Management, 2021, 227: 113585.
[39] WU Z X, CHEN L G, FENG H J, et al. Constructal thermodynamic optimization for a novel Kalina-organic Rankine combined cycle to utilize waste heat [J]. Energy Reports, 2021, 7: 6095-6106.
[40] GANJEHKAVIRI A, MOHD JAAFAR M N. Multi-objective particle swarm optimization of flat plate solar collector using constructal theory [J]. Energy, 2020, 194: 116846.
[41] JATAU T, BELLO-OCHENDE T. Constructal design of flat plate solar collector [J]. Proceedings of the Romanian Academy Series A, 2018, 19: 160-165.
[42] 石俊朝, 冯辉君, 陈林根, 等. 太阳能海洋热能转换系统中平板集热器构形设计[J]. 中国科学: 技术科学, 2022, 52: 403-414.
[43] GAO S, WANG Y J, LI Y, et al. Performance analysis of S-CO2 tube with high non-uniform heat flux:thermal-fluid-structural evaluation and optimization [J]. Applied Thermal Engineering, 2023, 231: 120849.
[44] LIU P, WU J F, CHEN L G, et al. Numerical analysis and multi-objective optimization design of parabolic trough receiver with ribbed absorber tube [J]. Energy Reports, 2021, 7: 7488-7503.
[45] MERCHáN R P, SANTOS M J, MEDINA A, et al. High temperature central tower plants for concentrated solar power: 2021 overview [J]. Renewable and Sustainable Energy Reviews, 2022, 155:111828.
[46] HE Y L, QIU Y, WANG K, et al. Perspective of concentrating solar power [J]. Energy, 2020, 198: 117373.
[47] YU Q, FU P, YANG Y H, et al. Modeling and parametric study of molten salt receiver of concentrating solar power tower plant [J]. Energy, 2020, 200:117505.
[48] WANG W Q, QIU Y, LI M J, et al. Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower [J]. Applied Energy, 2020, 272: 115079.
[49] MARTINEK J, JAPE S, TURCHI C S. Evaluation of external tubular configurations for a high-temperature chloride molten salt solar receiver operating above 700?°C [J]. Solar Energy, 2021, 222:115-128.
[50] GENTILE G, PICOTTI G, BINOTTI M, et al. A comprehensive methodology for the design of solar tower external receivers [J]. Renewable and Sustainable Energy Reviews, 2024, 193:114153.
[51] LE ROUX W G, BELLO-OCHENDE T, MEYER J P. A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle [J]. Renewable and Sustainable Energy Reviews, 2013, 28: 677-690.
[52] 佐藤豪. 燃气轮机循环理论[M]. 北京: 机械工业出版社, 1983.
[53] GOODARZI M. Comparative energy analysis on a new regenerative Brayton cycle [J]. Energy Conversion and Management, 2016, 120: 25-31.
[54] OLUMAYEGUN O, WANG M, KELSALL G. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR) [J]. Applied Energy, 2017, 191: 436-453.
[55] LIU H Q, CHI Z R, ZANG S S. Optimization of a closed Brayton cycle for space power systems [J]. Applied Thermal Engineering, 2020, 179: 115611.
[56] CHEN L G, WANG W H, SUN F R, et al. Closed intercooled regenerator Brayton-cycle with constant-temperature heat reservoirs [J]. Applied Energy, 2004, 77(4): 429-446.
[57] 王文华, 陈林根, 戈延林, 等. 燃气轮机循环有限时间热力学研究新进展[J]. 热力透平, 2012, 41(3): 171-178, 208.
[58] NASERIAN M M, FARAHAT S, SARHADDI F. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle [J]. Energy Conversion and Management, 2016, 117: 95-105.
[59] KAUSHIK S C, KUMAR R, ARORA R. Thermo-economic optimization and parametric study of an irreversible regenerative Brayton cycle [J]. Journal of Thermal Engineering, 2016, 2(4): 861-870.
[60] CHANDRAMOULI R, RAVI KIRAN SASTRY G, GUGULOTHU S K, et al. Multi-objective optimization of thermo-ecological criteria-based performance parameters of reheat and regenerative Braysson cycle [J]. Transactions of the ASME, Journal of Energy Resources Technology, 2021, 143(7): 072106.
[61] PRAJAPATI P, PATEL V, RAJA B D, et al. Thermal efficiency and specific work optimization of combined Brayton and inverse Brayton cycle: a multi-objective approach [J]. Thermal Science and Engineering Progress, 2023, 37: 101624.
[62] ROMANO L F R, RIBEIRO G B. Optimization of a heat pipe-radiator assembly coupled to a recuperated closed Brayton cycle for compact space power plants [J]. Applied Thermal Engineering, 2021, 196: 117355.
[63] TANG C Q, CHEN L G, FENG H J, et al. Four-objective optimization for an improved irreversible closed modified simple Brayton cycle [J]. Entropy, 2021, 23(3): 282.
[64] QIU X F, CHEN L G, GE Y L, et al. Efficient power analysis and five-objective optimization of a simple endoreversible closed Brayton cycle [J]. Case Studies in Thermal Engineering, 2022, 39: 102415.
[65] CHEN L G, FENG H J, GE Y L, et al. Power and efficiency optimizations for an open cycle two shaft gas turbine power plant [J]. Propulsion and Power Research, 2023, 12(4): 457-466.
[66] 廖吉香, 刘兴业, 郑群, 等. 超临界CO2发电循环特性分析[J]. 热能动力工程, 2016, 31(5): 40-46.
[67] XIN T, XU C, YANG Y. Thermodynamic analysis of a novel supercritical carbon dioxide Brayton cycle based on the thermal cycle splitting analytical method [J]. Energy Conversion and Management, 2020, 225: 113458.
[68] WANG S, WU C, LI J. Exergoeconomic analysis and optimization of single-pressure single-stage and multi-stage CO2 transcritical power cycles for engine waste heat recovery: a comparative study [J]. Energy, 2018, 142: 559-577.
[69] NA S I, KIM M S, BAIK Y J, et al. Optimal allocation of heat exchangers in a supercritical carbon dioxide power cycle for waste heat recovery [J]. Energy Conversion and Management, 2019, 199: 112002.
[70] 夏少军, 金晴龙, 吴志祥. 回热型超临界二氧化碳布雷顿循环?效率分析与优化[J]. 华南理工大学学报(自然科学版), 2022, 50(2): 111-120 .
[71] 金晴龙, 夏少军, 吴志祥. 回热型S-CO2循环基本性能分析与优化[J]. 热能动力工程, 2022, 37(7): 15-26.
[72] JIN Q L, XIA S J, LI P L, et al. Multi-objective performance optimization of regenerative S-CO2 Brayton cycle based on neural network prediction [J]. Energy Conversion and Management: X, 2022, 14:100203.
[73] 金晴龙, 夏少军, 王超. 预热型S-CO2循环?性能分析与优化[J]. 中国电机工程学报, 2023, 43(3): 1072-1083.
[74] JIN Q L, XIA S J, XIE T C. Ecological function analysis and optimization of recompression S-CO2 cycle for gas turbine waste heat recovery [J]. Entropy, 2022, 24(5):723.
[75] JIN Q L, XIA S J, CHEN L G. A modified recompression S-CO2 Brayton cycle and its thermodynamic optimization [J]. Energy, 2023, 263(Part E): 126015.
[76] LI J, PENG X, YANG Z, et al. Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: a review [J]. Applied Energy, 2022, 311: 118609.
[77] PING X, YANG F B, ZHANG H G, et al. Information theory-based dynamic feature capture and global multi-objective optimization approach for organic Rankine cycle (ORC) considering road environment [J]. Applied Energy,2023,348: 121569.
[78] ZHANG J, HU X D, WU D, et al. A comparative study on design and performance evaluation of organic Rankine cycle (ORC) under different two-phase heat transfer correlations [J]. Applied Energy, 2023, 350: 121724.
[79] MANA A A, KAITOUNI S I, KOUSKSOU T, et al. Enhancing sustainable energy conversion: comparative study of superheated and recuperative ORC systems for waste heat recovery and geothermal applications, with focus on 4E performance [J]. Energy, 2023, 284: 128654.
[80] LEE W Y, KIM M, SOHN Y J, et al. Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system [J]. Energy, 2016, 113: 1062-1070.
[81] CHEN W J, FENG H J, CHEN L G, et al. Optimal performance characteristics of subcritical simple irreversible organic Rankine cycle [J]. Journal of Thermal Sciences, 2018, 27(6): 555-562.
[82] FENG H J, CHEN W J, CHEN L G, et al. Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle [J]. Energy Conversion and Management, 2020, 220: 113079.
[83] LIU Q,CHEN R, YANG X L, et al. Thermodynamic analyses of sub- and supercritical ORCs using R1234yf, R236ea and their mixtures as working fluids for geothermal power generation [J]. Energies, 2023, 16(15): 5676.
[84] YANG W H, FENG H J, CHEN L G, et al. Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle [J]. Energy, 2023, 278: 127755.
[85] ZHI L H, HU P, CHEN L X. A novel optimization method for transcritical-subcritical parallel organic Rankine cycle under variable engine loads and cooling water temperature [J]. Case Studies in Thermal Engineering, 2023, 51: 103675.
[86] FENG J S, CHENG X N, YAN Y R, et al. Thermodynamic and thermo-economic analysis, performance comparison and parameter optimization of basic and regenerative organic Rankine cycles for waste heat recovery [J]. Case Studies in Thermal Engineering, 2023, 52: 103816.
[87] 马晓锋, 张舒涵, 何勇. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
[88] 何泽兴, 史成香, 陈志超. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
[89] NI M, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant [J]. Energy Conversion and Management, 2008, 49(10): 2748-2756.
[90] NIEMINEN J, DINCER I, NATERER G. Comparative performance analysis of PEM and solid oxide steam electrolysers [J]. International Journal of Hydrogen Energy, 2010, 35(20): 10842-10850.
[91] 张后程. 电解水制氢和燃料电池系统的性能特性与参数优化设计[D]. 厦门: 厦门大学, 2012.
[92] GARCíA-VALVERDE R, ESPINOSA N, URBINA A. Simple PEM water electrolyser model and experimental validation [J]. International Journal of Hydrogen Energy, 2012, 37(2): 1927-1938.
[93] ABDOLLAHIPOUR A, SAYYAADI H. Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems [J]. Energy, 2022, 260: 124944.
[94] FEIDT M. Evolution of thermodynamic modelling for three and four heat reservoirs reverse cycle machines: a review and new trends [J]. International Journal of Refrigeration, 2013, 36(1): 8-23.
[95] XU Z Y, WANG R Z. Absorption refrigeration cycles: categorized based on the cycle construction [J]. International Journal of Refrigeration, 2016, 62: 114-136.
[96] AHMADI M H, AHMADI M A. Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGA-II [J]. Renewable and Sustainable Energy Reviews, 2016, 60: 784-794.
[97] FEIDT M. Thermodynamics applied to reverse cycle machines, a review [J]. International Journal of Refrigeration, 2010, 33(7): 1327-1342.
[98] QIN X Y, CHEN L G, GE Y L, et al. Finite time thermodynamic studies on absorption thermodynamic cycles: a state of the arts review [J]. Arabian Journal for Science and Engineering,2013, 38(3): 405-419.
[99] MEDJO NOUADJE B A, NGOUATEU WOUAGFACK P A, TCHINDA R. Finite-time thermodynamics optimization of an irreversible parallel flow double-effect absorption refrigerator [J]. International Journal of Refrigeration, 2016, 67: 433-444.
[100] QIN X Y,ZHANG K, CHEN L G, et al. Ecological and ECOP performances of an irreversible two-stage absorption refrigeration cycle [C]// Proceedings of 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFA2017), Portoroz, Slovenia, July 17-19,2017:40-45.
[101] FOSSI NEMOGNE R L, NGOUATEU WOUAGFACK P A, MEDJO NOUADJE B A, et al. Multi-objective optimization and analysis of performance of a four-temperature-level multi-irreversible absorption heat pump [J]. Energy Conversion and Management, 2021, 234: 113967.
[102] ZHAI C,WU W. Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources [J]. Energy, 2022, 239(Part B): 122193.
[103] CANBOLAT A S, BADEMLIOGLU A H, ARSLANOGLU N, et al. Performance optimization of absorption refrigeration systems using Taguchi, ANOVA and Grey Relational Analysis methods [J]. Journal of Cleaner Production, 2019, 229: 874-885.
[104] FELLAH A, BOUKHCHANA Y, BRAHIM A B. Quasi-real performances of an irreversible solar absorption refrigeration cycle [J]. International Journal of Refrigeration, 2019, 100: 21-26.
[105] KEUNE G F, NGOUATEU WOUAGFACK P A, TCHINDA R. Local stability analysis of an irreversible absorption refrigerator powered by a wood boiler [J]. International Journal of Refrigeration, 2020, 115: 83-95.
[106] YE Z L, HOLUBEC V. Maximum efficiency of absorption refrigerators at arbitrary cooling power [J]. Physical Review E, 2021, 103(5): 052125.
[107] MOHANTA S, SARYAL S, AGARWALLA B K. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators [J]. Physical Review E, 2022, 105(3): 034127.
[108] ABBAS N Y, MUSTAFA A W, ASKERA M K A A. Constructal design of heat exchangers: a review [J]. International Journal of Advances in Engineering and Management, 2022, 3(12):27-40.
[109] DA SILVA A K, LORENTE S, BEJAN A. Constructal multi-scale tree-shaped heat exchanger [J]. Journal of Applied Physics, 2004, 96(3): 1709-1718.
[110] ZIMPAROV V D, DA SILVA A K, BEJAN A. Constructal tree-shaped parallel flow heat exchangers [J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4558-4566.
[111] 冯辉君, 陈林根, 谢志辉, 等. 基于火积理论的H型多尺度换热器构形优化[J]. 中国科学: 技术科学, 2013, 43(2): 169-177.
[112] BEJAN A, ALALAIMI M, SABAU A S, et al. Entrance-length dendritic plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 2017, 114: 1350-1356.
[113] NEJAD A H, EKICI K, SABAU A S, et al. Counter cross-flow evaporator geometries for supercritical organic Rankine cycles [J]. International Journal of Heat and Mass Transfer, 2019, 135: 425-435.
[114] FENG H J, CHEN L G, WU Z X, et al. Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process [J]. International Journal of Heat and Mass Transfer, 2019, 131: 750-756.
[115] CAI C G, FENG H J, CHEN L G, et al. Constructal design of a shell-and-tube evaporator with ammonia-water working fluid [J]. International Journal of Heat and Mass Transfer, 2019, 135: 541-547.
[116] WU Z X, FENG H J, CHEN L G, et al. Performance optimization of a condenser in OTECS based on constructal theory and multi-objective genetic algorithm [J]. Entropy, 2020, 22: 641.
[117] 陈林根, 冯辉君, 谢卓君, 等. 基于火积理论的船用锅炉构形优化[J]. 中国科学: 技术科学, 2021, 51(10): 1208-1218.
[118] LIU H Y, XIE Z H, LU Z Q, et al. Constructal optimization of double-layer asymmetric flower baffles [J]. Energy, 2023, 280: 128254.
[119] YAO Y, LIU H, GUO X, et al. Numerical and experimental investigations of the heat transfer and fatigue life of a new W-type mini microchannel heat exchanger [J]. International Journal of Heat and Mass Transfer, 2023, 212: 124293.
[120] FAIZAN M, ALMERBATI A. Evolutionary design of compact counterflow heat exchanger [J]. Transactions of the ASME, Journal of Energy Resources Technology, 2023, 145(3): 032102.
[121] MUSTAFA A W, SULAIMAN U A, AWAD M M. Constructal design of crossflow heat exchanger with concentric and eccentric circular fins [J]. Heat Transfer, 2024, doi: 10.1002/htj.22989.
[122] YU M J, XU L, CUI H C, et al. Characteristics and potential of a novel inclined-flow Stirling regenerator constructed by sinusoidal corrugated channels [J]. Energy, 2024, 288: 129686.
[123] WANG E H, PENG N J. A review on the preliminary design of axial and radial turbines for small-scale organic Rankine cycle [J]. Energies, 2023, 16(8): 3423.
[124] DU Y, YANG Y, HU D S, et al. Off-design performance comparative analysis between basic and parallel dual-pressure organic Rankine cycles using radial inflow turbines [J]. Applied Thermal Engineering, 2018, 138: 18-34.
[125] SUN Q X, WANG Y X, CHENG Z Y, et al. Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source [J]. Renewable Energy, 2020, 147: 2822-2832.
[123] AL JUBORI A M, AL-DADAH R, MAHMOUD S. An innovative small-scale two-stage axial turbine for low-temperature organic Rankine cycle [J]. Energy Conversion and Management, 2017, 144: 18-33.
[127] JEONG J S, LEE S W. Full aerodynamic loss data for efficient squealer tip design in an axial flow turbine [J]. Energy, 2020, 206: 118170.
[128] KIM Y S, LORENTE S, BEJAN A. Distribution of size in steam turbine power plants [J]. International Journal of Energy Research, 2009, 33(11): 989-998.
[129] BEYENE A, PEFFLEY J. Constructal theory, adaptive motion, and their theoretical application to low-speed turbine design[J]. Journal of Energy Engineering, 2009, 135(4): 112-118.
[130] STANESCU G, BARBU E, VILAG V, et al. Constructal approach on the feasibility of compressed air temperature control by evaporative cooling in gas turbine power plants [J]. Proceedings of the Romanian Academy, Series A, Mathematics,Physics,Technical Science, Information Science, 2018, 18(Special issue): 201-206.
[131] WU Z X, FENG H J, CHEN L G, et al. Optimal design of dual-pressure turbine in OTEC system based on constructal theory [J]. Energy Conversion and Management, 2019, 201: 112179.
[132] CHEN L G, WU Z X, FENG H J, et al. Constructal design for dual-pressure axial-flow turbine in organic Rankine cycle [J]. Energy Reports, 2022, 8: 45-55.
[133] WANG Z, MA Y, CAO M L, et al. Energy, exergy, exergoeconomic, environmental (4E) evaluation and multi-objective optimization of a novel SOFC-ICE-SCO2-HRSG hybrid system for power and heat generation [J]. Energy Conversion and Management, 2023, 291: 117332.
[134] MEHRABIAN M J, MANESH M H K, JEONG D H. 4E and risk assessment of a novel integrated biomass driven polygeneration system based on integrated SCO2-ORC-AD-SOFC- SOEC-PEMFC-PEMEC [J]. Sustainable Energy Technologies and Assessments, 2023, 58: 103317.
[135] YOUSEF M S, SANTANA D. Thermodynamic and exergoeconomic optimization of a new combined cooling and power system based on supercritical CO2 recompression Brayton cycle [J]. Energy Conversion and Management, 2023, 295: 117592.
[136] MUBASHIR W, ADNAN M, ZAMAN M, et al. Thermo-economic evaluation of supercritical CO2 Brayton cycle integrated with absorption refrigeration system and organic Rankine cycle for waste heat recovery [J]. Thermal Science and Engineering Progress, 2023, 44: 102073.
[137] YOUSEF M S, SANTANA D. Energy and exergy analyses of a recompression supercritical CO2 cycle combined with a double-effect parallel absorption refrigeration cycle [J]. Energy Reports, 2023(9):195-201.
[138] BISHAL S S, FAYSAL D F, EHSAN M M, et al. Performance evaluation of an integrated cooling and power system combining supercritical CO2, gas turbine, absorption refrigeration, and organic rankine cycles for waste energy recuperating system [J]. Results in Engineering, 2023, 17:100943.
[139] ZENG R, GAN J J, GUO B X, et al. Thermodynamic performance analysis of solid oxide fuel cell-ombined cooling, heating and power system with integrated supercritical CO2 power cycle -organic Rankine cycle and absorption refrigeration cycle [J]. Energy, 2023, 283:129133.
[140] CHENG K L, LI J H, YU J C, et al. Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: performance comparison and configuration optimization [J]. Energy, 2023, 284:129368.
[141] TAO H, MAMUN K A, ALI A, et al. Performance enhancement of integrated energy system using a PEM fuel cell and thermoelectric generator [J]. International Journal of Hydrogen Energy, 2024, 51 (Part D): 1280-1292.
[142] AMIRI M B, YARI M, RANJBAR F, et al. Waste heat recovery from a flame-assisted fuel cell utilizing recompression supercritical CO2 Brayton and dual-pressure organic Rankine cycles [J]. International Journal of Hydrogen Energy, 2024, 51 (Part D): 1293-1310.
[143] IRANI A S, FATTAHI A. On the combined Brayton-Kalina cycle with PEM hydrogen production: an exergoeconomic analysis and multi-objective optimization with LINMAP decision maker [J]. International Journal of Hydrogen Energy, 2024, 52 (Part A): 289-304.
[144] LI Y Y, YANG Y P. Thermodynamic analysis of a novel integrated solar combined cycle [J]. Applied Energy, 2014, 122: 133-142.
[145] LIU Q B, BAI Z, WANG X H, et al. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems [J]. Energy Conversion and Management, 2016, 122: 252-262.
[146] LINARES J I, ARENAS E, CANTIZANO A, et al. Innovative integrated solar combined cycle: enhancing dispatchability with a partial recuperative gas turbine and supercritical CO2 bottoming cycle, coupled with an ORC[J]. Solar Energy, 2023, 264: 112075.
[147] SHEYKHLOU H, AGHDASH M M, JAFARMADAR S, et al. Multi-aspect prediction of the sensitivity of thermodynamic/thermoeconomic performance metrics of an innovative solar-driven trigeneration system utilizing thermal energy storage [J]. Energy, 2023, 284:128722.
[148] KARTHIKEYAN B,KUMAR G P. Thermoeconomic and optimization approaches for integrating cooling, power, and green hydrogen production in dairy plants with a novel solar-biomass cascade ORC system [J]. Energy Conversion and Management, 2023, 295:117645.
[149] CHEN L G, FENG H J, SUN F R. Exergoeconomic performance optimization for a combined cooling, heating and power generation plant with an endoreversible closed Brayton cycle [J]. Mathematical and Computer Modelling, 2011, 54(11/12): 2785-2801.
[150] FENG H J, CHEN L G, SUN F R. Exergoeconomic optimal performance of an irreversible closed Brayton cycle combined cooling, heating and power plant [J]. Applied Mathematical Modelling, 2011, 35(9): 4661-4673.
[151] YANG B, CHEN L, GE Y L, et al. Exergy performance analyses of an irreversible two-stage intercooled regenerative reheated closed Brayton CHP plant [J]. International Journal of Exergy, 2014, 14(4): 459-483.
[152] YANG B, CHEN L, GE Y L, et al. Finite time exergoeconomic performance of a real intercooled regenerated gas turbine cogeneration plant. Part 2: heat conductance distribution and pressure ratio optimization [J]. International Journal of Low-Carbon Technologies, 2014, 9(4): 262-267.
[153] YANG B, CHEN L, GE Y L, et al. Finite time exergoeconomic performance of a real, intercooled, regenerated gas turbine cogeneration plant. Part 1: model description and parametric analyses [J]. International Journal of Low-Carbon Technologies, 2014, 9(1): 29-37.
[154] CHEN L G, FENG H J, SUN F R. Exergy optimization for irreversible closed Brayton cycle combined cooling, heating and power generation plant [J]. Journal of Energy Institute, 2013, 86(2): 97-106.
[155] YANG B, CHEN L G, SUN F R. Exergy performance optimization of an endoreversible variable-temperature heat reservoirs intercooled regenerated Brayton cogeneration plant [J]. Journal of Energy Institute, 2016, 89(1): 1-11.
[156] CHEN L G, YANG B, FENG H J, et al. Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China’s steelmaking plants [J]. Energy, 2020, 203: 117791.
[157] 国家自然科学基金委员会工程与材料科学部. 工程热物理与能源利用学科发展战略研究报告(2021—2030)[M]. 北京:科学出版社, 2023.