|本期目录/Table of Contents|

[1]张钰丰,覃远航*.从含硅高钠含锂废水中萃取提锂的研究 [J].武汉工程大学学报,2025,47(01):10-13.[doi:10.19843/j.cnki.CN42-1779/TQ.202404028]
 ZHANG Yufeng,QIN Yuanhang*. Extraction of lithium from silicon-and-sodium-rich lithium-containing wastewater [J].Journal of Wuhan Institute of Technology,2025,47(01):10-13.[doi:10.19843/j.cnki.CN42-1779/TQ.202404028]
点击复制

从含硅高钠含锂废水中萃取提锂的研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年01期
页码:
10-13
栏目:
化学与化学工程
出版日期:
2025-02-28

文章信息/Info

Title:
Extraction of lithium from silicon-and-sodium-rich lithium-containing wastewater
文章编号:
1674 - 2869(2025)01 - 0010 - 04
作者:
张钰丰覃远航*
武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),新型反应器与绿色化工技术湖北省重点实验室(武汉工程大学),湖北 武汉 430205

Author(s):
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Key Laboratory of Green Chemical
Engineering Process of Ministry of Education (Wuhan Institute of Technology), Hubei key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology), Wuhan 430205, China
关键词:
含锂废水萃取法萃取率除硅
Keywords:
lithium-containing wastewater extraction method extraction efficiency silicon removal
分类号:
TF804.2
DOI:
10.19843/j.cnki.CN42-1779/TQ.202404028
文献标志码:
A
摘要:
从含锂废水回收锂可减少锂资源的浪费和环境污染。针对锂交换分子筛生产工艺中产生的含硅高钠含锂废水,开展了基于萃取法提锂的研究。以三正辛基氧膦(TOPO)-磺化煤油-苯甲酰三氟丙酮(HBTA)体系为萃取剂,从含锂废水中选择性提锂,考察了油水比、反萃剂的组成等对提锂效果的影响。研究发现首次萃取率可达97.8%;利用盐酸作为反萃剂从萃取相中脱除Li+时,Li+的脱除率最高达到20.2%;采用胶体凝聚法进行除硅,除硅率达到92.3%,Li+的质量浓度升高至1 411 mg·L-1;对除硅后的溶液进行萃取,油水体积比为1∶1时,油相中Li+的质量浓度为1 340 mg·L-1,Na+的质量浓度为1 481 mg·L-1,通过2次盐酸酸洗,最终可得到1 190 mg·L-1的Li+溶液。
Abstract:
Recovering lithium from lithium-containing wastewater reduces the waste of lithium resources and environmental pollution. This study focuses on lithium extraction from high-sodium, silicon-containing lithium wastewater generated during the production of lithium exchange molecular sieves. Using the tri-n-octylphosphine oxide(TOPO) sulfonated kerosene 3-benzoyl-1,1,1-trifluoroacetone(HBTA) system as the extractant, the effects of oil-to-water ratio, composition of the stripping agent, and other factors on lithium extraction performance were explored. It was found that the initial extraction efficiency could reach 97.8%; when hydrochloric acid was used as the stripping agent, the removal rate of Li+ from the extraction phase could reach a maximum of 20.2%. Silicon was removed by the colloidal coagulation method, achieving a silicon removal rate of 92.3% and the mass concentration of Li+ increasing to 1 411 mg·L-1. When the solution after silicon removal was extracted and the oil water volume ratio was 1∶1, the mass concentration of Li+ in the oil phase was 1 340 mg·L-1, and the mass concentration of Na+ was 1 481 mg·L-1. Finally, a Li+ solution with a concentration of 1 190 mg·L-1 could be obtained through two rounds of hydrochloric acid pickling.

参考文献/References:

[1] 曹倩, 沙秋, 刘人和, 等. 国内外锂产业发展现状和思考 [J]. 石油科技论坛, 2024, 43(1): 94-102.
[2] ZHANG L C, LI L J, SHI D, et al. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system [J]. Separation and Purification Technology, 2017, 188: 167-173.
[3] ZHOU Z Y, QIN W, FEI W Y, et al. A study on stoichiometry of complexes of tributyl phosphate and methyl isobutyl ketone with lithium in the presence of FeCl3[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 36-39.
[4] XIANG W, LIANG S K, ZHOU Z Y, et al. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium [J]. Hydrometallurgy, 2016,166: 9-15.
[5] XIANG W, LIANG S K, ZHOU Z Y, et al. Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone [J]. Hydrometallurgy, 2017, 171: 27-32.
[6] SUN J, LI X W, HUANG Y H, et al. Preparation of high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources [J]. Chemical Engineering Journal, 2023,453:139485.
[7] ZHAO Z, LIU G, JIA H, et al. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio [J]. Journal of Membrane Science, 2020, 596: 117685.
[8] SHIN D J, JOO S H, LEE D, et al. Precipitation of lithium phosphate from lithium solution by using sodium phosphate [J]. The Canadian Journal of Chemical Engineering, 2022, 100(12): 3760-3767.
[9] ZHANG L C, LI L J, SHI D, et al. Recovery of lithium from alkaline brine by solvent extraction with β-diketone [J]. Hydrometallurgy, 2018, 175: 35-42.
[10] HANADA T, GOTO M. Synergistic deep eutectic solvents for lithium extraction [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2152-2160.
[11] ZHANG L C, JI L M, LI L J, et al. Recovery of Co, Ni, and Li from solutions by solvent extraction with β-diketone system [J]. Hydrometallurgy, 2021, 204: 105718.
[12] MATINFAR M, NYCHKA J A. A review of sodium silicate solutions: structure, gelation, and syneresis [J]. Advances in Colloid and Interface Science, 2023,322: 103036.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-04-18
基金项目:国家自然科学基金(21306144)
作者简介:张钰丰,硕士研究生。 Email:[email protected]
*通信作者:覃远航,博士,教授。 Email:[email protected]
引文格式:张钰丰,覃远航. 从含硅高钠含锂废水中萃取提锂的研究[J]. 武汉工程大学学报,2025,47(1):10-13,20.
更新日期/Last Update: 2025-03-12