|本期目录/Table of Contents|

[1]李 华,马 超,汤加杰,等.沉积温度对MOCVD法在铁素体不锈钢表面制备Mn1.5Co1.5O4涂层性能的影响[J].武汉工程大学学报,2025,47(01):37-43.[doi:10.19843/j.cnki.CN42-1779/TQ.202409018]
 LI Hua,MA Chao,TANG Jiajie,et al.Influence of deposition temperature on properties of Mn1.5Co1.5O4 coating prepared by MOCVD method on surface of ferritic stainless steel[J].Journal of Wuhan Institute of Technology,2025,47(01):37-43.[doi:10.19843/j.cnki.CN42-1779/TQ.202409018]
点击复制

沉积温度对MOCVD法在铁素体不锈钢表面制备Mn1.5Co1.5O4涂层性能的影响
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年01期
页码:
37-43
栏目:
材料科学与工程
出版日期:
2025-02-28

文章信息/Info

Title:
Influence of deposition temperature on properties of Mn1.5Co1.5O4 coating prepared by MOCVD method on surface of ferritic stainless steel
文章编号:
1674 - 2869(2025)01 - 0037 - 07
作者:
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430205;
2. 武汉工程大学化工与制药学院,湖北 武汉 430205

Author(s):
1. School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205, China;
2. School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205, China
关键词:
Keywords:
分类号:
TG174
DOI:
10.19843/j.cnki.CN42-1779/TQ.202409018
文献标志码:
A
摘要:
为了研究在固体氧化物燃料电池阴极条件下Mn1.5Co1.5O4涂层对连接体的保护效果,以三(2,2,6,6-四甲基-3,5-庚二酮)锰和双(2,2,6,6-四甲基-3,5-庚二酮)钴为前驱体,通过金属有机化学气相沉积法在SUS430铁素体不锈钢上成功制备了Mn1.5Co1.5O4涂层。在1 023 K空气气氛下对其进行抗氧化测试,使用X射线衍射、扫描电子显微镜对氧化前后的样品进行了物相和微观形貌分析。结果表明:Mn1.5Co1.5O4涂层合金氧化后单位面积增加的质量相较于SUS430合金减少了60%以上,其中923 K沉积温度下制备的涂层合金样品抗氧化性能最优,合金涂层相较于空白合金氧化速率常数从5.08×10-14 g2/(cm4·s)降为1.68×10-15 g2/(cm4·s)。使用金属有机化学气相沉积法制备的Mn1.5Co1.5O4涂层能有效降低SUS430连接体的氧化速率,显著提高其抗氧化性能。
Abstract:
To investigate the protective effect of Mn1.5Co1.5O4 coating on the connector under the cathode conditions of solid oxide fuel cells,Mn1.5Co1.5O4 coating was successfully prepared on SUS430 ferritic stainless steel by metal-organic chemical vapor deposition using tris(2,2,6,6-tetramethyl-3,5-heptanedione) manganese and bis(2,2,6,6-tetramethyl-3,5-heptanedione)cobalt as precursors. The samples were subjected to oxidation resistance tests at 1 023 K in an air atmosphere,and the phase composition and microscopic morphology of samples before and after oxidation were analyzed using X-ray diffraction and scanning electron microscopy. The results show that the mass gain per unit area of the oxidized Mn1.5Co1.5O4 coating was reduced by more than 60% compared to that of the oxidized SUS430 alloy,and the antioxidant performance of the coated alloy samples prepared at deposition temperature of 923 K was optimal,with an oxidation rate constant of 1.68×10-15 g2/(cm4·s), in contrast to 5.08×10-14 g2/(cm4·s) for the blank alloys. The Mn1.5Co1.5O4 coating prepared by metal-organic chemical vapor deposition effectively reduced the oxidation rate constant of the SUS430 connector,thus significantly improving its high-temperature oxidation resitance.

参考文献/References:

[1] 张涛.《2030年前碳达峰行动方案》解读[J]. 生态经济,2022,38(1):9-12.
[2] RAMADHANI F, HUSSAIN M A, MOKHLIS H,et al. Optimization strategies for solid oxide fuel cell (SOFC) application:a literature survey [J]. Renewable and Sustainable Energy Reviews,2017,76:460-484.
[3] ZHANG X B,JIN Y M,LI D,et al. A review on recent advances in micro-tubular solid oxide fuel cells [J]. Journal of Power Sources,2021,506:230135.
[4] FONTANA S,AMENDOLA R,CHEVALIER S,et al. Metallic interconnects for SOFC:characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys [J]. Journal of Power Sources,2007,171(2):652-662.
[5] 汪维,苑莉莉,丘倩媛,等.流延法制备单片式直接碳固体氧化物燃料电池组及其性能研究[J].无机材料学报,2019,34(5):509-514.
[6] CODDET P, LIAO H L, CODDET C. A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies [J]. Advances in Manufacturing,2014,2(3):212-221.
[7] LOUREIRO F J A,NASANI N,REDDY G S,et al. A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for protonic ceramic fuel cells [J]. Journal of Power Sources,2019,438:226991.
[8] EXNER J, NAZARENUS T, KITA J, et al. Dense Y-doped ion conducting perovskite films of BaZrO3,BaSnO3,and BaCeO3 for SOFC applications produced by powder aerosol deposition at room temperature [J]. International Journal of Hydrogen Energy,2020,45(16):10000-10016.
[9] 姜媛,黄志良,陈常连,等. 铝掺杂磷灰石型硅酸镧电解质的电导机理[J]. 武汉工程大学学报,2022,44(1):48-54.
[10] ZHANG W Y,LI J,YANG J,et al. Characterization of a new Fe-based alloy as metallic interconnect in SOFC anode environment [J]. International Journal of Hydrogen Energy,2016,41(47):22246-22253.
[11] BI Z H, ZHU J H, DU S W, et al. Effect of alloy composition on the oxide scale formation and electrical conductivity behavior of Co-plated ferritic alloys [J]. Surface and Coatings Technology,2013,228:124-131.
[12] FU Q X,SEBOLD D,TIETZ F,et al. Electrodeposited cobalt coating on Crofer22APU steels for interconnect applications in solid oxide fuel cells [J]. Solid State Ionics,2011,192(1):376-382.
[13] SHONG W J, LIU C K, YANG P. Effects of electroless nickel plating on 441 stainless steel as SOFC interconnect [J]. Materials Chemistry and Physics,2012,134(2/3):670-676.
[14] KO Y S, KIM S, PARK S, et al. Effect of the simultaneous addition of lanthanum and nickel on the oxidation behavior and related area-specific resistance of ferritic stainless steels for solid oxide fuel cell interconnects [J]. Corrosion Science,2024,233:112098.
[15] GENG S J, QI S J, XIANG D, et al. Oxidation and electrical behavior of ferritic stainless steel interconnect with Fe-Co-Ni coating by electroplating [J]. Journal of Power Sources,2012,215:274-278.
[16] 韩敏芳,李震,杜晓佳,等.固体氧化物燃料电池合金连接体涂层材料研究进展[J].稀有金属材料与工程,2009,38(增刊2):708-711.
[17] MAO J W,WANG E H,WANG H W,et al. Progress in metal corrosion mechanism and protective coating technology for interconnect and metal support of solid oxide cells [J]. Renewable and Sustainable Energy Reviews,2023,185:113597.
[18] FARNOUSH H, FARAK M, ABDOLI H. A fluid-flow approach in oxidation evaluation of SUS 430 steels coated by Fe/Mn-modified MnCo2O4 for solid oxide fuel cell application [J]. International Journal of Hydrogen Energy,2024,52(Part D):905-915.
[19] RANJBAR-NOURI Z,SOLTANIEH M,RASTEGARI S. Applying the protective CuMn2O4 spinel coating on AISI-430 ferritic stainless steel used as solid oxide fuel cell interconnects [J]. Surface and Coatings Technology,2018,334:365-372.
[20] ZHAO Q Q,GENG S J,CHEN G,et al. Influence of preoxidation on high temperature behavior of NiFe2 coated SOFC interconnect steel [J]. International Journal of Hydrogen Energy,2019,44(26):13744-13756.
[21] BEDNARZ M,MOLIN S,BOBRUK M,et al. High-temperature oxidation of the Crofer 22?H ferritic steel with Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings under thermal cycling conditions and its properties [J]. Materials Chemistry and Physics,2019,225:227-238.
[22] HU Y Z,SU Y T,LI C X,et al. Dense Mn1.5Co1.5O4 coatings with excellent long-term stability and electrical performance under the SOFC cathode environment [J]. Applied Surface Science,2020,499:143726.
[23] 李紫琪,赵培,刘莎,等.化学气相沉积法制备碳化铬薄膜的研究[J]. 武汉工程大学学报,2021,43(2):181-186,191.
[24] 王碧辉,肖博,潘佩媛,等. 固体氧化物燃料电池金属连接体腐蚀研究进展[J].中国腐蚀与防护学报,2023,43(1):6-12.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-09-23
基金项目:湖北省教育厅科技计划指导项目(B2023041);湖北省重点研发项目(2024BCB074)
作者简介:李 华,硕士研究生。Email:[email protected]
*通信作者:赵 培,博士,教授。Email:[email protected]
引文格式:李华,马超,汤加杰,等. 沉积温度对MOCVD法在铁素体不锈钢表面制备Mn1.5Co1.5O4涂层性能的影响[J]. 武汉工程大学学报,2025,47(1):37-43.

更新日期/Last Update: 2025-03-12