|本期目录/Table of Contents|

[1]龚翔宇,黄自鑫*,危少奇,等.平面两自由度欠驱动机器人的统一控制策略[J].武汉工程大学学报,2025,47(01):93-98.[doi:10.19843/j.cnki.CN42-1779/TQ.202303023]
 GONG Xiangyu,HUANG Zixin*,WEI Shaoqi,et al.Unified control strategy for planar two-degree-of-freedom underactuated robots[J].Journal of Wuhan Institute of Technology,2025,47(01):93-98.[doi:10.19843/j.cnki.CN42-1779/TQ.202303023]
点击复制

平面两自由度欠驱动机器人的统一控制策略
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年01期
页码:
93-98
栏目:
机电与信息工程
出版日期:
2025-02-28

文章信息/Info

Title:
Unified control strategy for planar two-degree-of-freedom underactuated robots
文章编号:
1674 - 2869(2025)01 - 0093 - 06
作者:
1. 武汉工程大学电气信息学院,湖北 武汉 430205;
2. 智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205;
3. 湖北省数字化纺织装备重点实验室(武汉纺织大学),湖北 武汉 430200
Author(s):
1. School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Hubei Key Laboratory of Intelligent Robot (Wuhan Institute of Technology), Wuhan 430205, China;
3. Hubei Digital Textile Equipment Key Laboratory (Wuhan Textile University), Wuhan 430200, China

关键词:
Keywords:
分类号:
TP273
DOI:
10.19843/j.cnki.CN42-1779/TQ.202303023
文献标志码:
A
摘要:
针对平面两自由度欠驱动机器人运动过程中的稳定问题,提出一种基于轨迹规划和跟踪的统一控制策略。首先,平面两自由度欠驱动机器人由于被动关节位置不同可分为平面Acrobot和平面Pendubot两种结构,对这两种结构的平面两自由度欠驱动机器人建立统一的动力学模型,分析两种结构下的驱动连杆与欠驱动连杆之间的耦合约束关系。然后,设计由两个控制阶段组成的运动轨迹,第一阶段控制驱动连杆跟踪预定轨迹快速到达目标位置,第二阶段欠驱动连杆也同时被间接控制到目标状态,第一阶段运动轨迹与第二阶段运动轨迹在初始时刻和终止时刻的性质相同。第一阶段运动轨迹含有驱动连杆的初始和目标状态,第二阶段运动轨迹含有待优化的可调参数。设计驱动连杆控制器跟踪叠加轨迹,叠加轨迹的参数由智能算法优化得到,使得两个连杆可以同时控制目标轨迹。最后,进行实验仿真,结果证明该策略能够在更短的控制时间内,施加较小的控制力矩使连杆连续光滑的到达目标状态并保持系统稳定。
Abstract:
A unified control strategy based on trajectory planning and tracking was proposed to address the stability issue during the motion of planar two-degree-of-freedom underactuated robots. Firstly, the mentioned robots were classified into planar Acrobot and planar Pendubot based on their structures due to different passive joint positions. A unified dynamic model of the planar two-degree-of-freedom underactuated robot with these two structures was established, and the coupling constraint relationship between the two structures was analyzed. Then, a motion trajectory consisting of two control stages was designed. In the first stage, the actuated link was controlled to track the predetermined trajectory and quickly reached the target position. In the second stage, the underactuated link was also indirectly controlled to the target state. The motion trajectory in the first stage had the same properties as those in the second stage at the initial and end moments. The first stage trajectory contained the initial and target states of the actuated link, while the second stage trajectory contained adjustable parameters to be optimized. The actuated link controller was designed to track the superimposed trajectory, and the parameters of the superimposed trajectory were optimized by an intelligent algorithm, enabling the two links to control the objective trajectory simultaneously. Finally, simulation experiments were conducted, and the results demonstrate that this strategy can apply a smaller control torque within a shorter control time to enable the connecting rods to reach the target state continuously and smoothly while maintaining system stability.

参考文献/References:

[1] 黄自鑫, 秦翔宇, 王乐君. 二阶非完整平面欠驱动机械系统的位置控制[J]. 武汉工程大学学报, 2021, 43(5): 567-572.
[2] 王乐君, 孟庆鑫, 赖旭芝, 等. 垂直三连杆欠驱动机械臂通用控制策略设计[J].控制理论与应用, 2020, 37(12): 2493-2500.
[3] HUANG Z X, LAI X Z, ZHANG P, et al. A general control strategy for planar 3-DoF underactuated manipulators with one passive joint[J]. Information Sciences, 2020, 534:139-153.
[4] 张川,文小玲,喻盈,等. 一种双关节机器鱼的设计与实现[J]. 武汉工程大学学报, 2021, 43(5):573-579.
[5] 赵建宇,宋捷,郭瑞,等. 基于Cortex-M4的无人飞行器安防系统研究[J]. 武汉工程大学学报, 2016, 38(2): 189-194.
[6] 黄自鑫, 王乐君. 一类平面欠驱动机械系统控制方法综述[J]. 武汉工程大学学报, 2021, 43(4): 448-454,467.
[7] CAO S Q, LAI X Z, WU M. Motion control method of planar Acrobot based on trajectory characteristics[C]// Proceeding of the 31st Chinese Control Conference. Piscataway: IEEE, 2012: 4910-4915.
[8] LAI X Z, SHE J H, CAO W H, et al. Stabilization of underactuated planar Acrobot based on motion-state constraints[J]. International Journal of Non-Linear Mechanics, 2015, 77: 342-347.
[9] CAO J Q, LAI X Z, WU M. Position control method for a planar Acrobot based on fuzzy control[C]// Proceeding of the 34th Chinese Control Conference. Piscataway: IEEE, 2015: 923-927.
[10] 王亚午, 赖旭芝, 吴敏. 基于可变设计参数的平面Acrobot位置快速控制方法[J].电机与控制学报, 2017, 21(9): 110-118.
[11] HUANG Z X, LAI X Z. Control strategy based on iterative method for planar Pendubot[C]//Proceeding of the 37th Chinese Control Conference. Piscataway: IEEE, 2018: 858-861.
[12] LUCA A D, MATTONE R, ORIOLO G. Stabilization of an underactuated planar 2R manipulator[J]. International Journal of Robust and Nonlinear Control, 2000, 10(4): 181-198.
[13] HE G P, WANG Z L, ZHANG J, et al. Characteristics analysis and stabilization of a planar 2R underactuated manipulator[J]. Robotica, 2016, 34(3):584-600.
[14] WU J D, WANG Y W, YE W J, et al. Control strategy based on Fourier transformation and intelligent optimization for planar Pendubot[J]. Information Sciences, 2019, 491: 279-288.
[15] YANG M, LI C H, CAI Z H, et al. Differential evolution with auto-enhanced population diversity[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 302-315.
[16] LASALLE J P. Stability theory for ordinary differential equations[J]. Journal of Differential Equations, 1968, 4(1): 57-65.


相似文献/References:

[1]林少丹1,傅高升2,李俊达2.磨抛离线编程中修正砂带位姿及加工姿态[J].武汉工程大学学报,2015,37(09):50.[doi:10. 3969/j. issn. 1674-2869. 2015. 09. 009]
 ,Modification of belt position and processing posture in off-line programming of grinding and polishing[J].Journal of Wuhan Institute of Technology,2015,37(01):50.[doi:10. 3969/j. issn. 1674-2869. 2015. 09. 009]
[2]胡帮友,罗圆智*,王桂兰,等.等离子熔积复杂金属零件的数字化制造方法[J].武汉工程大学学报,2016,38(3):268.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 017]
 HU Bangyou,LUO Yuanzhi*,WANG Guilan,et al.Digital Method for Plasma Depositing Complex Metal Part[J].Journal of Wuhan Institute of Technology,2016,38(01):268.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 017]

备注/Memo

备注/Memo:
收稿日期:2023-03-15
基金项目:湖北省自然科学基金(2023AFB380); 智能机器人湖北省重点实验室创新基金(HBIRL202301,HBIRL202302); 湖北省数字化纺织装备重点实验室开放课题(KDTL2022003);武汉工程大学研究生教育创新基金(CX2023565,CX2023566,CX2023578)
作者简介:龚翔宇,硕士研究生。Email:[email protected]
*通信作者:黄自鑫,博士,副教授。Email:[email protected]
引文格式:龚翔宇,黄自鑫,危少奇,等. 平面两自由度欠驱动机器人的统一控制策略[J]. 武汉工程大学学报,2025,47(1):93-98.
更新日期/Last Update: 2025-03-12