[1]王娴明,赵宏延.一般大气条件下钢筋混凝土构件剩余寿命预测[J].建筑结构学报,1996(3):5862.
[2]李艺,林勇,赵文.酸性气体作用下服役结构的时变可靠度[J].辽宁工程技术大学学报,2006,25(2):214216.
[3]Wang Shennian, Pan Deqiang, Huang Junzhe. Long Term Durability of Marine Concrete Structures [A]. Nagataki.Proceedings of the 5th International Symposium on the Cement and Concrete[C]. Shanghai,2002.12541258.
[4]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版), 2002,36(4):371380.
[5]张誉,蒋利学,张伟平,等.混凝土结构耐久性概述[M].上海:科学技术出版社,2003:814.
[6]Gonzalez J A. Some Questions on the Corrosion of Steel in Concrete—Part1:When,How and How Much Steel Corrodes[J].Materials and Structures, 1996,29:4046.
[7]HwaiChung Wu. Crack Resistance and Durability of High Performance Fiber Reinforced Concrete [A]. Nagataki. Proceedings of the 5th International Symposium on the Cement and Concrete[C], Shanghai, 2002:11521159.
[8]吴谨,吴胜兴.锈蚀钢筋混凝土受弯构件承载力计算模型[J].建筑技术开发,2002,29(5):2022.
[9]任锋,刘俊岩,裴现勇.钢筋混凝土厂房耐久性评估研究[J].有色金属,2007,59(2):113115.
[10]管昌生,江智鹏.钢筋混凝土结构耐久性预测的时变可靠度方法[J].武汉理工大学学报,2003,25(6):3134.
[11]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000:12.
[12]屠艳平.钢筋混凝土结构耐久性分析的神经网络方法[D].武汉理工大学土木工程与建筑学院,2003.
[13]范颖芳,周晶,张京英.应用人工神经网络预测锈蚀钢筋与混凝土粘结性能.工业建筑,2002,32(9):4850.
[14]Buenfeld N R, Hassanein N M. Predicting the Life of Concrete Structure Using Neural Networks[J]. Proceedings of the Institute of the Civil Engineering Structures & Buildings, 1998,128:3848.
[15]张苑竹,金伟良.神经网络在混凝土结构可靠度评估中的应用[J]. 课技通报,2002,18(6):495500.
[16]惠云玲,林志伸,李荣.锈蚀钢筋性能试验研究分析[J].工业建筑,1997,27(6):1013.
[17]惠云玲,李荣,林志伸,等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997,27(6):1418.
[1]王晶琼,王光华,李文兵,等.功能性单体引发聚合PAM及其神经网络的预测应用[J].武汉工程大学学报,2009,(07):41.
WANG Jing qiong,WANG Guang hua,LI Wen bing,et al.Polymerization of PAM initiated by functional monomer and application in prediction based on the neural network[J].Journal of Wuhan Institute of Technology,2009,(03):41.
[2]余尤好.神经网络在通信系统回音对消中的应用[J].武汉工程大学学报,2012,(9):70.[doi:103969/jissn16742869201209016]
YU You hao.Application of neural network in echo cancellation of communication system[J].Journal of Wuhan Institute of Technology,2012,(03):70.[doi:103969/jissn16742869201209016]
[3]吴和保,李晓微,龙玉阳,等.人工神经网络快速预测蠕墨铸铁的性能[J].武汉工程大学学报,2013,(10):63.[doi:103969/jissn16742869201310013]
WU He\|bao,LI Xiao\|wei,LONG Yu\|yang,et al.Fast prediction of vermicular graphite cast iron property based on Back Propagation neutral network[J].Journal of Wuhan Institute of Technology,2013,(03):63.[doi:103969/jissn16742869201310013]
[4]杨帆,姜勇,杨元君.信息融合技术在矿井安全监测系统中的应用[J].武汉工程大学学报,2014,(05):64.[doi:103969/jissn16742869201405014]
YANG Fan,JIANG Yong,YANG Yuan jun.Information fusion technology in application of mine safety monitoring system[J].Journal of Wuhan Institute of Technology,2014,(03):64.[doi:103969/jissn16742869201405014]
[5]蒋冲宇,鲁统伟*,闵 峰,等.基于神经网络的发票文字检测与识别方法[J].武汉工程大学学报,2019,(06):586.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 013]
JIANG Chongyu,LU Tongwei*,MIN Feng,et al.Invoice Text Detection and Recognition Based on Neural Network[J].Journal of Wuhan Institute of Technology,2019,(03):586.[doi:10. 3969/j. issn. 1674-2869. 2019. 06. 013]
[6]汪然然,娄联堂*.基于图像分析和深度学习的复合绝缘子憎水性分级[J].武汉工程大学学报,2021,43(05):580.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106003]
WANG Ranran,LOU Liantang*.Hydrophobicity Classification of Composite Insulators Based on Image Analysis and Deep Learning[J].Journal of Wuhan Institute of Technology,2021,43(03):580.[doi:10.19843/j.cnki.CN42-1779/TQ. 202106003]