|本期目录/Table of Contents|

[1]杨海燕,兰宝华.基于PSOWNN的无刷直流电机转子位置检测方法[J].武汉工程大学学报,2010,(01):93-96.
 YANG Hai yan,LAN Bao hua.A new position detection based on PSOwavelet neural network method for brushless DC motors[J].Journal of Wuhan Institute of Technology,2010,(01):93-96.
点击复制

基于PSOWNN的无刷直流电机转子位置检测方法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2010年01期
页码:
93-96
栏目:
机电与信息工程
出版日期:
2010-01-31

文章信息/Info

Title:
A new position detection based on PSOwavelet neural network
 method for brushless DC motors
文章编号:
16742869(2010)01009304
作者:
杨海燕1兰宝华2
 (1. 福建工程学院计算机与信息科学系, 福建 福州 350014;
2. 深圳市赛为智能股份有限公司, 深圳 518000)
Author(s):
YANG Haiyan1 LAN Baohua2
1. Computer Science Department,Fujian University of Technology, Fuzhou 350014, China;
2. Szsunwin Intelligent Limited Liability Company, Shenzhen 518000, China
关键词:
无刷直流电机粒子群算法小波神经网络
Keywords:
brushless DC motor (BLDCM) partiele swarm optimizer algorithm (PSO) wavelet neural network
分类号:
TM301.2
DOI:
-
文献标志码:
A
摘要:
通过分析无刷直流电机间接位置检测原理,提出了一种新的方法来检测转子位置.该方法首先推导出转子位置可以通过以相磁通和相电流来决定,结合小波函数多尺度多分辨率的优点以及神经网络的非线性求解特点,通过构建小波神经网络模型,并采用粒子群算法来训练网络参数而得出转角位置.仿真结果表明该模型能有效地控制电机换相.
Abstract:
 The paper analyzed the principle of position sensorless control for brushless DC Motors (BLDCM), and a new position detection method for BLDCM was proposed. This method build  a wavelet  neural network which use phase flux linkages and phase currents as the input of  network, then to estimate the rotor position. A wavelet neural network model was built whose parameters were trained based on particle swarm optimizer algorithm The Simulation results show that the given modeling method can control the commutation.

参考文献/References:

[1]Iizuka K, Uzuhashi H, Kano M, et al. Microcomputer control for sensorless brushless motor[J]. IEEE Trans. on Industry Application, 1985, IA21:59560.
[2]Shao J, Nolan D, Hopkins T. A novel microcontrollerbased sensorless brushless dc(BLDC) motor drive for automotive fuel pumps[J]. IEEE Transactions on Industry Applications, 2003, 39(6): 17341740.
[3]Shao J, Nolan D, Hopkins T. Improved direct back EMF detection for sensorless brushless dc (BLDC) motor drives[J]. In: Proceeding of IEEE APEC, 2003: 300305.
[4]Lai Y, Shyu F, Rao W. Novel backEMF detection technique of brushless DC motor drives for whole dutyratio range control[C]. In: Proceeding of IEEE IES, 2004: 27292732.
[5]李秀英,韩志刚.非线性系统辨识方法的新进展[J].自动化技术与应用,2004,23(10): 57.
[6]Chen Weirong, Qian Qingquan, Wang Xiaoru. Wavelet neural network based transient fault signal detection and identification[C].IEEE Int.Conf on Information, Communications and Signal   Processing ICICS,1997: 13771381.
[7]胡雄鹰,熊茜,黎伟东.基于网络最大流算法[J].武汉工程大学学报, 2009,31(12):6769.
[8]沈斌,漆奋平,江维,等.基于BP网络的超滤膜分离中药成分的分析与实现[J].武汉工程大学学报,2009,31(9):5558.
[9]刘姝,金太东,胡博,等.BPPID在锅炉压力控制中的应用[J].武汉工程大学学报, 2009,31(7):9197.
[10]杨维,李歧强.粒子群优化算法综述 [J] .中国工程科学,2004(6):8794.

相似文献/References:

[1]刘扬,张振海.小波神经网络的无刷直流电机转子位置检测方法[J].武汉工程大学学报,2014,(10):66.[doi:103969/jissn167428692014010014]
 LIU Yang,ZHANG Zhen hai.Rotor position detection method of brushless direct current motor based on wavelet neural network[J].Journal of Wuhan Institute of Technology,2014,(01):66.[doi:103969/jissn167428692014010014]
[2]付 港,李 鸣*.最小二乘支持向量机的自适应数字水印算法[J].武汉工程大学学报,2015,37(06):67.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 014]
 I.Adaptive digital watermarking algorithm based on least squares support vector machine[J].Journal of Wuhan Institute of Technology,2015,37(01):67.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 014]

备注/Memo

备注/Memo:
收稿日期:20091006基金项目:福建工程学院基金(CYZ0898)作者简介:杨海燕(1980),女,湖南衡山人,博士研究生.研究方向:智能系统与模式识别.
更新日期/Last Update: