|本期目录/Table of Contents|

[1]王忠,王春丽,刘莉.基于SVM的多类分类算法改进[J].武汉工程大学学报,2010,(07):89-93.[doi:10.3969/j.issn.16742869.2010.07.023]
 WANG Zhong,WANG Chun li,LIU li.Improvement on bintree multiclass categorization algorithm based on SVM[J].Journal of Wuhan Institute of Technology,2010,(07):89-93.[doi:10.3969/j.issn.16742869.2010.07.023]
点击复制


基于SVM的多类分类算法改进
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2010年07期
页码:
89-93
栏目:
机电与信息工程
出版日期:
2010-07-31

文章信息/Info

Title:
Improvement on bintree multiclass categorization
algorithm based on SVM
文章编号:
16742869(2010)07008905
作者:
王忠1王春丽1刘莉2
1.武汉工程大学计算机科学与技术学院,湖北 武汉 430074;
2.湖北水利水电职业技术学院,湖北 武汉 430070
Author(s):
WANG Zhong1WANG Chunli1LIUli2
1.Wuhan Institute of  Technology,Wuhan 430074,China;
2.Hubei Water Resources Technical College, Wuhan 430070,China
关键词:
支持向量机分类算法统计学习二叉树
Keywords:
 support vector machinecategorization algorithmstatistical learning theoryquadratic programming
分类号:
TP312
DOI:
10.3969/j.issn.16742869.2010.07.023
文献标志码:
A
摘要:
在各种基于支持向量机的多类分类算法中,基于二叉树的多类支持向量机分类算法训练和分类速度相对较快,且解决了不可分问题,是一种很好的方法.本文系统研究和分析了基于二叉树的多类支持向量机分类算法,并在此基础上对其作出了改进,即当测试文本集规模较大时,对其先聚类再分类.改进的目的是,使测试文本不必总是从二叉树的根结点开始进行判断,而是有指导的代入分类函数中计算.在测试文本集规模较大,分类函数个数较多时,可以很大程度上增加分类效率,并加大了文本正确分类的概率.
Abstract:
It’s a hotspot to research on support vector machine that extends from twoclass issues to multiclass.Among all kinds of methods, bintree multiclass text categorization algorithm based on support vector machine is more effective in training and sorting than others, and it works out the impartibility problem.So it is a good method.The dissertation systematically researches and analyses bintree multiclass text categorization algorithm based on support vector machine, and then has some improvement on it.That is, we assembles firstly, and then sorts them when the size of testing texts is too large.The aim of this improvement is to make the testing text be computed more aimable, but does not  begin from the base crunode of bintree at all time .The improvement can enhance the effect of text categorization and make it move accurat when the size of testing texts is too large and the quantity of sorted function is too much .

参考文献/References:

[1]Vapnik V.The Nature of Statistical Learning Thery[M].New York:SpringerVerlag,2000.
[2]方辉,王倩.支持向量机的算法研究[J].长春师范学院学报:自然科学版,2007,26(3):9091.
[3]付香英,王春丽.非线性可分文本的SVM算法研究及改进[J].九江学院学报,2008,(3):6961.
[4]ShaweTaylor J,Bartlet P L,Williamson R C.Structural risk minimization over data dependent hierarchies.IEEE Transactions on Information Theory,1998,44(5):19261940.
[5]Hsu ChihWei,Lin ChihJen.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415425.
[6]黄琼英.支持向量机多类分类算法的研究及应用[D].河北:河北工业大学,2005.
[7]Kunchheva L.Combining classifiers by clustering, selection and decision templates[D].Technical report:University of Wales,2000.
[8]杜圣东.基于多类支持向量机的文本分类研究[D].重庆:重庆大学,2007.
[9]Jiawei Han,Micheline amber.数据挖掘概念与技术[M].范明, 孟晓峰,译.北京:机械工业出版社,2001.
[10]赵毓高.核聚类算法及其应用研究[D].成都:西华大学,2007.
[11]胡学军,腾达,胡林文.基于MATLAB的时滞对擦控制算法仿真分析[J].武汉工程大学学报,2010,32(3):9295.
[12]陈伟亚,徐佳彬,李伟波.基于技术线路图的循环经济发展规划技术研究[J].武汉工程大学学报,2010,32(5):5356.
[13]崔士杰,汪建华.基于MATLAB的单相全控整流电路功率因数测试[J].武汉工程大学学报,2010,32(1):9092.

相似文献/References:

[1]张正风.基于LS-SVM苯乳酸发酵过程的建模[J].武汉工程大学学报,2016,38(4):333.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 005]
 ZHANG Zhengfeng.Modeling of Phenyllactic Acid Fermentation Process Based on Least Square Support Vector Machine[J].Journal of Wuhan Institute of Technology,2016,38(07):333.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 005]
[2]李 娟,王 富*,王维锋,等.基于数据融合的疲劳驾驶检测算法[J].武汉工程大学学报,2016,38(05):505.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 018]
 LI Juan,WANG Fu*,WANG Weifeng,et al.Detection Algorithm of Fatigue Driving Based on Data Fusion[J].Journal of Wuhan Institute of Technology,2016,38(07):505.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 018]
[3]胡 迪,黄 巍*.基于AP-SVM组合模型的股票价格预测[J].武汉工程大学学报,2019,(03):296.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 017]
 HU Di,HUANG Wei*.Stock Price Trend Prediction Based On AP-SVM Combined Model[J].Journal of Wuhan Institute of Technology,2019,(07):296.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 017]
[4]何经纬,刘黎志*,彭 贝,等.基于Spark并行SVM参数寻优算法的研究[J].武汉工程大学学报,2019,(03):282.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 015]
 HE Jingwei,LIU Lizhi*,PENG Bei,et al.Spark Parallel SVM Parameter Optimization Algorithm[J].Journal of Wuhan Institute of Technology,2019,(07):282.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 015]

备注/Memo

备注/Memo:
收稿日期:20100401作者简介:王忠(1968),男,湖北江陵人,教授,硕士.研究方向:数字水印.
更新日期/Last Update: