|本期目录/Table of Contents|

[1]贺文杰,Bajolet Julien,Yoann Plassard,等.基于EMD和FFT的齿轮箱故障诊断[J].武汉工程大学学报,2011,(01):65-70,95.[doi:10.3969/j.issn.16742869.2011.01.017]
 HE Wen jie,BAJOLET Ju lien,PLASSARD Yoann,et al.Gearbox fault diagnosis based on EMD and FFT[J].Journal of Wuhan Institute of Technology,2011,(01):65-70,95.[doi:10.3969/j.issn.16742869.2011.01.017]
点击复制


基于EMD和FFT的齿轮箱故障诊断
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2011年01期
页码:
65-70,95
栏目:
机电与信息工程
出版日期:
2011-01-30

文章信息/Info

Title:
Gearbox fault diagnosis based on EMD and FFT
文章编号:
16742869(2011)01006506
作者:
贺文杰1Bajolet Julien2 Yoann Plassard2陈汉新1鲁艳军1
1.武汉工程大学机电工程学院,湖北 武汉 430074;2.法国国立梅斯工程师学院,梅斯 57078
Author(s):
HE Wenjie1 BAJOLET Julien2 PLASSARD Yoann2 CHEN Hanxin1 LU Yanjun1
1.School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430074, China;
2.Ecole Nationale d’Ingénieurs de Metz, Metz 57078, France
关键词:
齿轮箱经验模态分解快速傅里叶变换故障诊断
Keywords:
gearbox empirical mode decomposition fast Fourier transform fault diagnosis
分类号:
TH165+.3
DOI:
10.3969/j.issn.16742869.2011.01.017
文献标志码:
A
摘要:
提出了一种基于小波包分析(WPA),经验模态分解(EMD)和快速傅里叶变换(FFT)的齿轮箱故障诊断方法,此方法适合于非线性非稳态信号的自适应分析.首先运用WPA对采集的齿轮箱振动信号进行分解可得到不同频率的子频带;然后对各子频带信号进行EMD,从而得到一定数量的本征模态函数(IMF);最后选取特定的IMF,对其作FFT可得到相应的功率谱,从而提取齿轮箱故障特征频率,进而对齿轮箱故障模式进行识别和诊断.分析结果表明本文所提议的方法能有效地检测出齿轮箱故障特征频率.
Abstract:
Based upon wavelet packet analysis (WPA), empirical mode decomposition (EMD) and fast Fourier transform (FFT), a novel fault diagnosis method of gearbox is proposed in this paper. It is an adaptive signal processing method that is very suitable for nonlinear and nonstationary signals. Firstly, WPA is used to decompose the original vibration signals collected from gearbox in order to obtain different frequency bands with various frequencies. Second, EMD is applied to analyze different frequency bands to acquire a finite number of stationary intrinsic mode function (IMF). Finally, FFT is employed to obtain corresponding power spectrum density through analyzing the special IMF. Fault characteristic frequency can be extracted according to the power spectrum so that we can identify and diagnosis for fault modes of gearbox. The analysis results show that the proposed approach based on EMD and FFT is able to detect gearbox fault characteristic frequency effectively.

参考文献/References:

[1]陈汉新,王庆军,陈绪兵,等.基于解调振动信号特征提取齿轮箱的故障诊断[J].武汉工程大学学报,2010,32(9):6777.
[2]Liu B, Riemenschneuder S, Xu Y.Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J].Mechanical Systems and Signal Processing,2006,20(3):718734.
[3]Flandrin P. Timefrequency/timescale analysis[M].Academic press:San Diego,CA,1999.
[4]Grchenig K.Foundations of timefrequency analysis[M].Boston:Birkhauser,2001.
[5]H.Kantz, R.Schreiber. Nonlinear time series analysis[M].Cambridge:Cambridge University Press,1997.
[6]Diks C.Nonlinear Time Series Analysis: Methods and Applications[M].Singapore: World Scientific,1999.
[7]Huang N E.Introduction to the HilbertHuang transform and its related mathematical problems[M].In:HilbertHuang Transform and its Applications, World Scientific,2005.
[8]Windrow B,Stearns S D.Adaptive signal processing[M].Englewood Cliffs, NJ: PrenticeHall,1985.
[9]Huang N E, Shen Z,long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[C]//Proceedings of the Royal Society of London,1998:903955.
[10]Fan X F, Zuo M J.Gearbox fault detection using Hilbert and wavelet packet transform[J].Mechanical Systems and Signal Processing,2006,20(4):966982.
[11]Yen G G, Lin K K.Wavelet packet feature extraction for vibration monitoring[J].IEEE Transactions on Industrial Electronics,2000,47(3):650667.
[12]Liu B.Selection of wavelet packet basis for rotating machinery fault diagnosis[J].Journal of Sound and Vibration,2005,284(35):567582.
[13]Arsac J.Fourier Transforms[M].Englewood:PrenticeHall,1966.
[14]Blackman R B,Tukey J W.The Measurement of power Spectra[M].New York:Dover,1958.
[15]Cooley J W, Lewis P A W, Welch P D.Application of the fast Fourier transform to computation of Fourier integrals, Fourier series, and convolution integrals[J].IEEE Transactions on Audio and Electroacoustics,1967,15(2):7984.

相似文献/References:

[1]鲁艳军,陈汉新,贺文杰,等.基于混合特征提取和WNN的齿轮箱故障诊断[J].武汉工程大学学报,2011,(05):82.[doi:10.3969/j.issn.16742869.2011.05.022]
 LU Yanjun,CHEN Hanxin,HE Wenjie,et al.Gearbox fault diagnosis based on hybrid feature extraction and wavelet neural network[J].Journal of Wuhan Institute of Technology,2011,(01):82.[doi:10.3969/j.issn.16742869.2011.05.022]
[2]尚云飞,陈汉新,孙魁.面向齿轮箱故障诊断的序贯概率比检验理论和方法[J].武汉工程大学学报,2011,(12):65.
 SHANG Yun fei,CHEN Han xin,SUN Kui.Theories and methods of gearbox fault diagnosis oriented sequentialprobability ratio test[J].Journal of Wuhan Institute of Technology,2011,(01):65.
[3]安妮,徐建民.齿轮箱振动的故障诊断与分析[J].武汉工程大学学报,2011,(12):70.
 AN Ni,XU Jian min.Fault diagnosis and analysis of vibration of gearbox[J].Journal of Wuhan Institute of Technology,2011,(01):70.
[4]陈汉新,刘岑,杨诗琪.检测与诊断齿轮裂纹故障的一种方法[J].武汉工程大学学报,2014,(09):53.[doi:103969/jissn16742869201409011]
 CHEN Han xin,LIU Cen,YANG Shi qi.Gearbox fault diagnosis of sequential probability ratio based on radial basis function optimized particle filter[J].Journal of Wuhan Institute of Technology,2014,(01):53.[doi:103969/jissn16742869201409011]
[5]黄文健,黄瑾珉,曹承昊,等.基于PCA与SPRT的机械故障诊断方法研究[J].武汉工程大学学报,2018,40(06):678.[doi:10. 3969/j. issn. 16742869. 2018. 06. 019]
 HUANG Wenjian,HUANG Jinmin,CAO Chenghao,et al.Mechanic Fault Diagnosis Based on PCA and SPRT[J].Journal of Wuhan Institute of Technology,2018,40(01):678.[doi:10. 3969/j. issn. 16742869. 2018. 06. 019]

备注/Memo

备注/Memo:
收稿日期:20101229基金项目:湖北省教育厅科学技术研究重大项目(Z20101501);武汉市科技局科技攻关项目(201010621237)作者简介:贺文杰(1986),男,湖北监利人,硕士研究生在读.研究方向:机械系统的故障检测与诊断.指导老师:陈汉新,男,教授,博士.研究方向:机械故障诊断、无损检测和系统状态监测.
更新日期/Last Update: