|本期目录/Table of Contents|

[1]鲁艳军,陈汉新,贺文杰,等.基于混合特征提取和WNN的齿轮箱故障诊断[J].武汉工程大学学报,2011,(05):82-88.[doi:10.3969/j.issn.16742869.2011.05.022]
 LU Yanjun,CHEN Hanxin,HE Wenjie,et al.Gearbox fault diagnosis based on hybrid feature extraction and wavelet neural network[J].Journal of Wuhan Institute of Technology,2011,(05):82-88.[doi:10.3969/j.issn.16742869.2011.05.022]
点击复制

基于混合特征提取和WNN的齿轮箱故障诊断(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2011年05期
页码:
82-88
栏目:
机电与信息工程
出版日期:
2011-05-31

文章信息/Info

Title:
Gearbox fault diagnosis based on hybrid feature
extraction and wavelet neural network
文章编号:
16742869(2011)05008207
作者:
鲁艳军1陈汉新1贺文杰12尚云飞1陈绪兵1
1.武汉工程大学机电工程学院,湖北 武汉 430205;2.法国国立梅斯工程师学院,梅斯 57078
Author(s):
LU Yanjun1 CHEN Hanxin1 HE Wenjie12 SHANG Yunfei1 CHEN Xubing1
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Ecole Nationale d’Ingénieurs de Metz, Metz 57078, France
关键词:
齿轮箱特征提取小波神经网络故障诊断
Keywords:
gearbox feature extraction wavelet neural network fault diagnosis
分类号:
TH165+.3
DOI:
10.3969/j.issn.16742869.2011.05.022
文献标志码:
A
摘要:
提出了一种基于混合特征提取和小波神经网络(WNN)的齿轮箱故障诊断方法,运用时域分析法、小波分解和小波包分解相结合的方法对齿轮箱振动信号进行故障特征提取,将所提取的特征值作为WNN分类器的特征输入参数,采用反向传播(BP)算法对WNN结构中的平移参数、尺度参数、连接权值和阈值进行调整和优化.在实验中采用不同裂纹尺寸的齿轮来模拟三种故障模式,通过对三种故障齿轮进行诊断和分类,能证明本文所提议的故障诊断方法是有效且可靠的.
Abstract:
A new method of fault diagnosis for gearbox based on hybrid feature extraction and wavelet neural network (WNN) was proposed in this paper. The time domain analysis, wavelet packet decomposition and wavelet decomposition were applied to extract the fault feature information of vibration signals collected from gearbox. The extracted feature values were regarded as the feature input vector of WNN. The scale parameters, translation parameters, weight values and threshold values in WNN structure were optimized by traditional backpropagation (BP) algorithm. Three gear fault modes were simulated with different crack sizes in the experiment. The effectiveness and reliability of the presented fault diagnosis method were demonstrated through identification and classification for several fault modes.

参考文献/References:

[1]Lei Y G, He Z J, Zi Y Y. A new approach to intelligent fault diagnosis of rotating machinery [J]. Expert Systems with Applications, 2008, 35(4):15931600.
[2]Yang H Y, Mathew, Joseph, et al.Intelligent diagnosis of rotating machinery faultsA review[C]. In: 3rd AsiaPacific Conference on Systems Integrity and Maintenance, Cairns, Australia,2002: 17.
[3]Berenji H R,Wang Y. Wavelet neural networks for fault diagnosis and prognosis [C]//2006 IEEE 14th International Conference on Fuzzy Systems, Vancouver, Canada, 2006:13341339.
[4]Kang Y,Wang C C, Chang Y P. Gear fault diagnosis by using wavelet neural networks[M]. Advances in Neural Networks, 2007:580588.
[5]Lei Y G, He Z J,Zi Y Y. Application of an intelligent classification method to mechanical fault diagnosis [J]. Expert Systems with Applications, 2009, 36(6):99419948.
[6]Chen H X, Patrick, Chua S K, et al. Fault degradation assessment of water hydraulic motor by impulse vibration signal with wavelet packet analysis and KolmogorovSmirnov test [J]. Mechanical Systems and Signal Processing, 2008, 22(7):16701684.
[7]Fan X F,Zuo M J. Gearbox fault detection using Hilbert and wavelet packet transform[J].Mechanical Systems and Signal Processing, 2006,20(4): 966982.
[8]LIN J,Zuo M J. Gearbox fault diagnosis using adaptive wavelet filter [J]. Mechanical Systems and Signal Processing, 2003, 17(6):12591269.
[9]陈汉新,王庆军,陈绪兵,等.基于解调振动信号特征提取齿轮箱的故障诊断[J].武汉工程大学学报,2010,32(9):6777.
[10]贺文杰,Bajolet Julien,Yoann Plassard,等.基于EMD和FFT的齿轮箱故障诊断[J].武汉工程大学学报,2011,33(1):6570.
[11]Yen G G, Lin K K. Wavelet packet feature extraction for vibration monitoring [J].IEEE Transactions on Industrial Electronics, 2000, 47(3): 650667.
[12]Zhang Q, Benveniste A. Wavelet networks [J].IEEE Transactions on Neural Networks,1992,3(6): 889898.
[13]Ahlawat A, Pandey S. A variant of backpropagation algorithm for multilayer feedforward network[C]//Proceedings of the Fifth International Conference on Information Research and Applications, Varna, Bulgaria:2007:238246.

相似文献/References:

[1]贺文杰,Bajolet Julien,Yoann Plassard,等.基于EMD和FFT的齿轮箱故障诊断[J].武汉工程大学学报,2011,(01):65.[doi:10.3969/j.issn.16742869.2011.01.017]
 HE Wen jie,BAJOLET Ju lien,PLASSARD Yoann,et al.Gearbox fault diagnosis based on EMD and FFT[J].Journal of Wuhan Institute of Technology,2011,(05):65.[doi:10.3969/j.issn.16742869.2011.01.017]
[2]夏平平,吕太之.动态人脸识别系统的设计与实现[J].武汉工程大学学报,2011,(10):107.
 XIA Ping ping,LV Tai zhi.Design and implementation of dynamic faces recognition system[J].Journal of Wuhan Institute of Technology,2011,(05):107.
[3]尚云飞,陈汉新,孙魁.面向齿轮箱故障诊断的序贯概率比检验理论和方法[J].武汉工程大学学报,2011,(12):65.
 SHANG Yun fei,CHEN Han xin,SUN Kui.Theories and methods of gearbox fault diagnosis oriented sequentialprobability ratio test[J].Journal of Wuhan Institute of Technology,2011,(05):65.
[4]安妮,徐建民.齿轮箱振动的故障诊断与分析[J].武汉工程大学学报,2011,(12):70.
 AN Ni,XU Jian min.Fault diagnosis and analysis of vibration of gearbox[J].Journal of Wuhan Institute of Technology,2011,(05):70.
[5]曾寿金,刘志峰,江吉彬,等.再制造对象磁记忆信号的特征提取方法[J].武汉工程大学学报,2012,(4):64.
 ZENG Shou\|jin,LIU Zhi\|feng,JIANG Ji\|bin,et al.Feature extraction method of metal magnetic memory signals for remanufacturing objects [J].Journal of Wuhan Institute of Technology,2012,(05):64.
[6]洪汉玉,俞喆俊,章秀华.复杂光照条件下钢坯字符检测方法[J].武汉工程大学学报,2012,(06):65.[doi:103969/jissn16742869201206017]
 HONG Han\|yu,YU Zhe\|jun,ZHANG Xiu\|hua,et al.Detection of billet character in complex illumination conditions[J].Journal of Wuhan Institute of Technology,2012,(05):65.[doi:103969/jissn16742869201206017]
[7]王会清,张涛,周帆.声纹识别在虚拟仪器平台的实现[J].武汉工程大学学报,2012,(12):58.[doi:103969/jissn16742869201212014]
 WANG Hui qing,ZHANG Tao,ZHOU Fan.On implementation of voiceprint recognition in virtual instrument platform[J].Journal of Wuhan Institute of Technology,2012,(05):58.[doi:103969/jissn16742869201212014]
[8]陈汉新,刘岑,杨诗琪.检测与诊断齿轮裂纹故障的一种方法[J].武汉工程大学学报,2014,(09):53.[doi:103969/jissn16742869201409011]
 CHEN Han xin,LIU Cen,YANG Shi qi.Gearbox fault diagnosis of sequential probability ratio based on radial basis function optimized particle filter[J].Journal of Wuhan Institute of Technology,2014,(05):53.[doi:103969/jissn16742869201409011]
[9]黄文健,黄瑾珉,曹承昊,等.基于PCA与SPRT的机械故障诊断方法研究[J].武汉工程大学学报,2018,40(06):678.[doi:10. 3969/j. issn. 16742869. 2018. 06. 019]
 HUANG Wenjian,HUANG Jinmin,CAO Chenghao,et al.Mechanic Fault Diagnosis Based on PCA and SPRT[J].Journal of Wuhan Institute of Technology,2018,40(05):678.[doi:10. 3969/j. issn. 16742869. 2018. 06. 019]
[10]江满星,赵彤洲*,吴泽俊.基于目标形状卷积神经网络在舰船分类中的应用[J].武汉工程大学学报,2020,42(02):213.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]
 JIANG Manxing,ZHAO Tongzhou*,WU Zejun.Application of Convolution Neural Network Based on Target Shape in Ships and Warships Classification[J].Journal of Wuhan Institute of Technology,2020,42(05):213.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]

备注/Memo

备注/Memo:
收稿日期:20110114基金项目:湖北省教育厅科学技术研究重大项目(Z20101501);武汉市科技局科技攻关项目(201010621237)作者简介::鲁艳军(1987),男,湖北天门人,硕士研究生.研究方向:机械设备故障诊断与信号处理.指导老师:陈汉新,男,教授,博士研究生指导老师.研究方向:机械故障诊断及监控、化工石油管道的无损检测.
更新日期/Last Update: