|本期目录/Table of Contents|

[1]喻九阳,郑鹏,叶萌,等.高温蝶阀阀座温度分布和应力分析[J].武汉工程大学学报,2013,(10):46-51.[doi:103969/jissn16742869201310010]
 YU Jiu\|yang,ZHENG Peng,YE Meng,et al.Stress analysis and temperature distribution of high\|temperature butterfly valve seat[J].Journal of Wuhan Institute of Technology,2013,(10):46-51.[doi:103969/jissn16742869201310010]
点击复制

高温蝶阀阀座温度分布和应力分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2013年10期
页码:
46-51
栏目:
机电与信息工程
出版日期:
2013-11-10

文章信息/Info

Title:
Stress analysis and temperature distribution of high\|temperature butterfly valve seat
文章编号:
16742869(2013)10004606
作者:
喻九阳郑鹏叶萌彭红宇
武汉工程大学机电工程学院,湖北 武汉 430074
Author(s):
YU Jiu\|yang ZHENG Peng YE Meng PENG Hong\|yu
School of Mechanical Electrical Engineering, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
高温阀座保温层应力分析
Keywords:
high temperature valve seat insulating layer stress analysis
分类号:
TH134
DOI:
103969/jissn16742869201310010
文献标志码:
A
摘要:
利用ANSYS有限元软件建立了烟机入口电液高温蝶阀阀座的实体模型,分析了阀座在厚度为100 mm的保温层条件下的温度场,并采用热结构耦合分析的方法,进一步分析了阀座在高温梯度和内压共同作用下的应力场和变形量.结果表明,阀座筒体的温度沿厚度均匀分布,且内外壁温差仅为1 ℃左右,而保温层的温度沿厚度呈线性递减;阀座筒体的轴向位移较大,最大值为16.72 mm,所承受的等效应力较小,最大值仅为27.7 MPa,满足安全使用要求.
Abstract:
Real model of high temperature electrohydraulic butterfly valve seat at the exit of flue gas turbine was established by finite element software ANSYS. The temperature field of insulating layer with the thickness of 100 mm was analyzed. Stress field and deformation were further obtained by thermal\|structure coupling analysis under high temperature gradient and internal pressure. Results show that temperature through the thickness of the valve tube is well distributed, and the maximum temperature difference between the inner wall and the outer wall of the valve tube is about 1 ℃,moreover, the temperature distribution through the thickness of insulating layer is decreased linearly,the axial displacement of the valve seat can be achieved to 16.72 mm under combined thermal\|mechanical loadings,while the maximum von\|Mises equivalent stress of the valve seat is 27.7 MPa. This indicates the load\|carrying capacity of the high\|temperature butterfly valve meets the requirements of safe application.

参考文献/References:

[1]张为人. 阀门[M].上海:上海翻译出版社,1987.Zhang Weiren. Valve[M].Shanghai: Shanghai Translation Publishing House,1987.(in Chinese)[2]吕荣美. 高温阀门的高温等级和主体材料[J]. 通用机械,2008(7):63\|65.LV Rong\|mei. The Main Material and High grade of High\|temperature Valve[J]. General Machinery, 2008(7):63\|65.(in Chinese)[3]何培堂,刘先东,张志军,等. 高温阀门设计中的关键技术[J]. 炼油与化工,2002,13(4):27\|29.HE Pei\|tang,LIU Xian\|dong,ZHANG Zhi\|jun,et al.Key Techniques in the Design of High\|temperature Valve[J]. Refining and Chemicals, 2002,13(4):27\|29.(in Chinese)[4]张洪信,赵清海. ANSYS有限元分析完全自学手册[M].北京:机械工业出版社,2008.ZHANG Hong\|xin, ZHAO Qing\|hai. Complete Self\|study Manual of The ANSYS Finite Element Analysis[M].Beijing:China Machine Press,2008.(in Chinese)[5]李标栋,施迪华. 泡沫石棉—安全、高效的绝热隔音材料[J]. 能源工程,1988,0(1):42\|43.LI Biao\|dong,SHI Di\|hua.Foam asbestos—The security and efficient insulating material[J].Energy Engineering, 1988,8(1):42\|43.(in Chinese)[6]姚山,陈宝庆,戴利欣,等. 基于激光快速加热的金属材料热扩散率及导热系数快速测量方法的研究[J].热科学与技术. 2005,4(1):87\|90.YAO Shan,CHEN Bao\|qing,DAI Li\|xin,et al.Study on rapid measure of metallic material heat conductivity based on laser rapid heating[J]. Journal of Thermal Science and Technology. 2005,4(1):87\|90.(in Chinese)[7]孔祥谦. 热应力有限单元法分析[M].上海:上海交通大学出版社,1999.KONG Xiang\|qian.The Thermal Stress Analysis by Finite Element Method[M].Shanghai:Shanghai Jiao Tong University Press,1999.(in Chinese)[8]丁克勤,刘关四,魏化中,等快开式压力容器型型密封圈有限元公析[J].武汉工程大学学报,2013,35(8):53\|56.DING Ke\|qin,LIU Guan\|si,WEI Hua\|ahong,et al.Finite element analysis of special\|shaped sealing ring on quick actuating pressure vessel[J].Journal of Wuhan Institute of technology,2013,35(8):53\|56.(in Chinese)

相似文献/References:

[1]朱怀锐,李雪辉,王璐.O,O\|二乙基硫代磷酰氯高温合成工艺[J].武汉工程大学学报,2012,(2):38.
 ZHU Huai\|rui,LI Xue\|hui,WANG Lu.High temperature synthesis process of O,O\|Diethyl dithiophosphate phosphoryl chloride[J].Journal of Wuhan Institute of Technology,2012,(10):38.
[2]舒安庆,陈西茜,鲍 冲,等.高温高压快开门压力容器的强度评定及疲劳分析[J].武汉工程大学学报,2016,38(1):88.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 016]
 SHU Anqing,CHEN Xixi,BAO Chong,et al.Evaluating Strength and Analyzing Fatigue of Quick?Opening Pressure Vessel Based on Finite Element Method[J].Journal of Wuhan Institute of Technology,2016,38(10):88.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 016]
[3]郑小涛,黄 苏,喻九阳,等.高温法兰接头的稳态热分析与密封性能研究[J].武汉工程大学学报,2017,39(04):387.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 013]
 ZHENG Xiaotao,HUANG Su,YU Jiuyang,et al.Steady State Thermal Analysis and Sealing Performance of Flange Joint at High Temperature[J].Journal of Wuhan Institute of Technology,2017,39(10):387.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 013]
[4]戴文超,郑小涛*,文 翔,等.高温振动下聚四氟乙烯垫片的松弛与泄漏测试[J].武汉工程大学学报,2017,39(05):503.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 017]
 DAI Wenchao,ZHENG Xiaotao*,WEN Xiang,et al.Relaxation and Leakage Test of PTFE Gasket under High Temperature Vibration[J].Journal of Wuhan Institute of Technology,2017,39(10):503.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 017]

备注/Memo

备注/Memo:
收稿日期:20131012基金项目:国家自然科学基金(50976080); 武汉工程大学科学研究基金项目(14125061)作者简介:喻九阳(1962\|),男,湖北武汉人,教授,硕士.研究方向:强化传热技术与设备、机电一体化技术和设备等.
更新日期/Last Update: 2013-11-11