|本期目录/Table of Contents|

[1]洪汉玉,章秀华,程莉,等.道路病害形态特征的图像分析[J].武汉工程大学学报,2014,(04):70-75.[doi:103969/jissn16742869201404015]
 HONG Han yu,ZHANG Xiu hua,CHENG Li,et al.Image analysis method for road disease morphology characteristic[J].Journal of Wuhan Institute of Technology,2014,(04):70-75.[doi:103969/jissn16742869201404015]
点击复制

道路病害形态特征的图像分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2014年04期
页码:
70-75
栏目:
机电与信息工程
出版日期:
2014-04-30

文章信息/Info

Title:
Image analysis method for road disease morphology characteristic
文章编号:
16742869(2014)04007006
作者:
洪汉玉章秀华程莉罗枭王万里
武汉工程大学图像处理与智能控制研究所,湖北 武汉 430205
Author(s):
HONG HanyuZHANG XiuhuaCHENG LiLUO XiaoWANG Wanli
Laboratory for Image Processing and Intelligent Control,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
道路病害路面裂缝形态特征图像分析
Keywords:
road diseasespavement cracksmorphology characteristicimage analysis
分类号:
TP391
DOI:
103969/jissn16742869201404015
文献标志码:
A
摘要:
路面裂缝是道路病害的主要表现,在路面裂缝的检测过程中,为了准确、详细记录路面裂缝信息,需要对裂缝病害的形态特征进行分析,针对这一问题,提出了道路病害形态特征的图像分析方法.首先,对提取后的路面裂缝进行膨胀处理,连接断裂的裂缝;然后通过细化处理,得到具有单像素宽裂缝的裂缝骨架;最后采用游码和链码统计裂缝的像素数目和几何形态特征,实现对路面裂缝的特征参数值获取及量化描述.结果表明该裂缝图像分析方法对道路裂缝形态特征的描述和统计有效,具有实用价值.
Abstract:
Pavement cracks are main forms of road diseases.To record the detail information of road cracks accurately,it is necessary to analyze morphological characteristics of pavement cracks in the process of detecting cracks.Aimed at this problem,an evaluation method for road cracks morphological characteristics was proposed.Firstly,disconnect portions in the images of cracks extracted were connected by the operation of dilation.Then,the images with single pixel width cracks were obtained by the thinning processing.Finally,tour code and chain code were used to count the number of pixels and morphological characteristics of pavement cracks.Experimental result shows that the proposed evaluation method in this paper is effective to describe the morphology characteristics of crack,having practical value.

参考文献/References:

[1]龙建武,申铉京,陈鹏海.自适应最小误差阈值分割算法[J].自动化学报,2012,38(7):11341144.LONG Jianwu,SHEN Xuanjing,CHENG Penghai.Adaptive minimum error thresholding algorithm[J].Acta Automatica Sinica,2012,38(7):11341144.(in Chinese)[2]NEJAD F M,IAKERI H.An optimum feature extraction method based on WaveletRadon Transform an Dynamic Neural Network for pavement distress classification[J].Expert Systems with Applications,2011,38(8):94429460.[3]韩宏,杨静宇.神经网络分类器的组合[J].计算机研究与发展,2000,37(12):14881492.HAN Hong,YANG Jingyu.Combination of neural network classifiers[J].Journal of Computer Research and Development,2000,37(12):14881492.(in Chinese)[4]ZOU Qin,CAO Yu,LI Qingquan,et al.CrackTree:Automatic crack detection from pavement images[J].Pattern Recognition Letters,2012,33(3):227238.[5]洪汉玉.现代图像图形处理与分析[M].武汉:中国地质大学出版社,2011.HONG Hanyu.Advanced processing and analysis for image and graphics[M].Wuhan:China University of Geosciences Press,2011.(in Chinese)[6]鲁光泉,许洪国,李一兵.基于链码检测的直线段检测方法[J].计算机工程,2006,32(14):13,10.LU Guangquan,XU Hongguo,LI Yibing.Line segment detection based on chain code detection[J].Computer Engineering,2006,32(14):13,10.(in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20140324基金项目:国家自然科学基金面上项目(61175013,61305039);湖北省自然科学基金创新群体项目( 2012FFA046 )作者简介:洪汉玉(1964),男,湖北阳新人,教授,博士,博士研究生导师.研究方向:图像识别与智能控制研究.
更新日期/Last Update: 2014-05-15