|本期目录/Table of Contents|

[1]杨帆,姜勇,杨元君.信息融合技术在矿井安全监测系统中的应用[J].武汉工程大学学报,2014,(05):64-67.[doi:103969/jissn16742869201405014]
 YANG Fan,JIANG Yong,YANG Yuan jun.Information fusion technology in application of mine safety monitoring system[J].Journal of Wuhan Institute of Technology,2014,(05):64-67.[doi:103969/jissn16742869201405014]
点击复制

信息融合技术在矿井安全监测系统中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2014年05期
页码:
64-67
栏目:
机电与信息工程
出版日期:
2014-05-31

文章信息/Info

Title:
Information fusion technology in application of mine safety monitoring system
文章编号:
16742869(2014)05006404
作者:
杨帆12姜勇1杨元君1
1.武汉工程大学电气信息学院,湖北 武汉 430205;2.智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
YANG Fan12JIANG Yong1YANG Yuanjun1
1.College of Electronic and Information Engineering,Wuhan Institute of Technology,Wuhan 430205,China;2.Hubei Provincial Key Laboratory of Intelligent Robot(Wuhan Institute of Technology),Wuhan 430205,China
关键词:
传感器节点多传感器信息融合无线传感器网络神经网络矿井安全
Keywords:
sensor nodesmultisensor information fusionwireless sensor networksneural networksafety monitor
分类号:
TP273
DOI:
103969/jissn16742869201405014
文献标志码:
A
摘要:
为了能够准确的判断矿井内环境的安全状况,利用信息融合技术设计了一套矿井安全监测系统.该系统主要由传感器节点、数据处理单元、地面监控单元和融合算法等几部分构成.传感器节点由温度传感器、瓦斯传感器、CO传感器和风速传感器组成,完成对井内各项数据的采集并将数据传送给数据处理单元;数据处理单元以CC2530芯片为控制芯片,对采集到的数据进行处理,并通过ZigBee技术实现无线传感器网络节点的数据传输;算法部分基于反向传播(BP)神经网络的融合算法,利用MATLAB实现的训练样本对实际数据进行融合,完成对实际情况的判断,最后做出决策.MATLAB仿真结果显示,融合后的结果与实际情况吻合,为矿井的安全监控提供更好的保障.
Abstract:
To determine the security situation accurately,a mine safety monitoring system was designed based on the information fusion technology.The system is mainly divided into four parts of sensor nodes,data processing unit,ground monitoring unit and fusion algorithm.Sensor nodes,consisting of temperature sensors,gas sensors,carbon monoxide sensors and wind speed sensors,collect and deliver the data to the processing unit;data processing unit uses CC2530 as control chip to process the collected data,then the wireless sensor network nodes transmit data by ZigBee technology;combined with the MATLAB,the fusion algorithm completes the training samples and carries out the fusion of actual data based on back propagation neural network,finally makes a decision.The MATLAB experiment simulation shows that the fused results are consistent with the actual situation,providing a stable and safe monitoring environment for the miners.

参考文献/References:

[1]ZHANG Xiaoyu,HUANG Weizhi.Multisensor information fusion technology and the application in mine pit environmental monitoring[C]//YANG Yixian.2010 AsiaPacific Conference on Information Theory,October 12,2010,Xian,China.USA: Scientific Research Publishing,2010:1013.[2]杨帆,陈茂林,吴迅,等.基于传感器信息融合技术的森林火灾报警系统[J].华中科技大学学报:自然科学版,2013,41(2):2225.YANG Fan,CHEN Maolin,WU Xun,et al.Warning system for forestfire based on sensor information fusion technology[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2013,41(2):2225.(in Chinese) [3]YICK J,MUKHERJEE B,GHOSAL D.Wireless sensor network survey[J].Computer Networks: The International Journal of Computer and Telecommunications Networking,2008,52(12):22922330.[4]杨帆,吴迅,陈茂林,等.基于精馏塔多源信息融合的故障诊断方法[J].武汉理工大学学报,2012, 34(11):135138.YANG Fan,WU Xun,CHEN Maolin et al.A method of fault diagnosis based on multisource information fusion applied in the distillation column[J].Journal of Wuhan University of Technology,2012,34(11):135138.(in Chinese)[5]杨帆,程雯,夏亦冰,等.多传感器信息融合测控体系在温室测控中的应用研究[J].武汉理工大学学报,2011,33(9):156159.YANG Fan,CHENG Wen,XIA Yibing,et al.Research on the application of sensor information fusion control system in the conservatory monitor[J].Journal of Wuhan University of Technology,2011,33(9):156159.(in Chinese)[6]王鹤,周东祥,宋委远,等.基于遗传神经网络的混合气体识别研究[J].华中科技大学学报:自然科学版,2007,35(9):118120.WANG He,ZHOU Dongxiang,SONG Weiyuan et al.Recognition of multigas by using genetic algorithm optimizing neural network[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2007,35(9):118120.(in Chinese)[7]杨帆,江星,陈茂林,等.基于DS证据理论的精馏塔故障诊断方法[J].长江大学学报:自然科学版,2013,10(28):6062.YANG Fan,JIANG Xing,CHEN Maolin,et al.Distillation column fault diagnosis method based on DS evidence theory[J].Journal of Yangtze University:Natural Science Edition,2013,10(28):6062.(in Chinese)[8]苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报,2003,19(2):130135.SU Gaoli,DENG Fangping.On the improving back propagation algorithms of the neural networks based on MATLAB language:A review[J].Bulletin of Science and Technology,2003,19(2):130135.(in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20140415基金项目:湖北省自然科学基金(2010CDB11101); 武汉工程大学研究生教育创新基金(2011CX63)作者简介:杨帆(1966),女,湖北公安人,教授,硕士.研究方向:智能仪器及测控系统.
更新日期/Last Update: 2014-06-15