|本期目录/Table of Contents|

[1]王升高,刘翔,孔垂雄,等.介质阻挡放电结合二氧化锰对空气中苯的降解[J].武汉工程大学学报,2014,(07):48-52.[doi:103969/jissn16742869201407010]
 WANG Sheng gao,LIU Xiang,KONG Chui xiong,et al.Degradation of benzene in air stream by dielectric barrier discharge combined with manganese dioxide[J].Journal of Wuhan Institute of Technology,2014,(07):48-52.[doi:103969/jissn16742869201407010]
点击复制

介质阻挡放电结合二氧化锰对空气中苯的降解(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2014年07期
页码:
48-52
栏目:
材料科学与工程
出版日期:
2014-07-31

文章信息/Info

Title:
Degradation of benzene in air stream by dielectric barrier discharge combined with manganese dioxide
文章编号:
16742869(2014)07004805
作者:
王升高刘翔孔垂雄李鹏飞杜祖荣皮晓强
湖北省等离子体化学与新材料重点实验室(武汉工程大学),湖北 武汉 430074
Author(s):
WANG Shenggao LIU Xiang KONG Chuixiong LI Pengfei DU Zurong PI Xiaoqiang
Hubei Key Laboratory of Plasma Chemical and Advanced Materials(Wuhan Institute of Technology),Wuhan 430074,China
关键词:
二氧化碳选择比催化降解率 臭氧含量
Keywords:
selectivity of carbon dioxide catalysis degradation ozone concentration
分类号:
TM 344.1
DOI:
103969/jissn16742869201407010
文献标志码:
A
摘要:
为了提高介质阻挡放电技术对空气中苯的降解效率、降低尾气中的残余的臭氧含量,采用水热法制备了二氧化锰催化剂,并结合等离子体对模拟空气中的苯进行了降解研究.通过气相色谱仪测定尾气中苯、二氧化碳和一氧化碳的含量,利用碘量滴定法测定尾气中臭氧的含量,分析了不同功率和不同气体流速对苯降解效率的影响.结果表明,催化剂与等离子体的结合能有效提高模拟空气中苯的降解率和二氧化碳选择比;苯的降解率和二氧化碳选择比随功率的增大而增加,但随气体流速的增大而减小.苯的降解率上升至70.9%,二氧化碳选择比提高至73.8%,同时尾气中臭氧降低为36 mg/kg.
Abstract:
To improve the dielectric barrier discharge technology on the degradation of benzene and reduce the residual ozone concentration in the tail gas,manganese dioxide catalyst was prepared by hydrothermal method, and used to degrade the benzene in the simulated air combined with plasma. The concentrations of residue benzene, carbon dioxide, carbon monoxide and ozone were analyzed by gas chromatography and iodometry. Meanwhile, the degradation efficiency of benzene was evaluated under different power and gas flow rates. The results indicate that the degradation ratio of benzene and the selectivity of carbon dioxide are improved when the plasma degradation and manganese dioxide catalytic degradation are simultaneously used; the degradation efficiency of benzene and the selectivity of carbon dioxide are both improved with the increasing of power, but decrease with the increasing of gas velocity. The degradation ratio of benzene increases to 70.9% and the selectivity of carbon dioxide grows up to 73.8 %, meanwhile the concentration of ozone reduces to 36 mg/kg with the assist effect of manganese dioxide catalyst.

参考文献/References:

[1]Directive C. 13/EC on the limitation of the emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations\[EB/OL\] \[20140703\]. http://eurlex. europa. eu/LexUriServ.[2]沈嘉,郝吉明,王丽涛.中国加油站VOC排放污染现状及控制[J].环境科学,2006,27(8): 14731478.SHEN Jia, HAO Jiming, WANG Litao. VOC emission situation and control measures of gas station in China \[J\]. Environmental Science, 2006, 27(8):14731478. (in Chinese)[3]刘金凤,赵静,李湉湉,等.我国人为源挥发性有机物排放清单的建立[J].中国环境科学, 2008,28(6): 496500. LIU Jinfeng, ZHAO Jing, LI Tiantian, et al. Establishment of Chinese anthropogenic source volatile organic compounds emission inventory \[J\]. China Environmental Science, 2008,28(6): 496500. (in Chinese)[4]TANG L, HUANG H, ZHAO Z, et al. Pyrolysis of polypropylene in a nitrogen plasma reactor[J]. Industrial & engineering chemistry research, 2003, 42(6):11451150.[5]KELLY T J, STICKSEL P R, POLLACK A J. Air pollutant monitoring and health risk assessment in Allen CountyLima, Ohio[C]//85th Annual Meeting and Exhibition of Air and Waste Management Association, USA:\[s.n.\],2002: 134.[6]刘媛,王鸯鸯,杨威.浅析挥发性有机废气治理技术[J].中国环保产业,2012,11: 4043.LIU Yuan, WANG Yangyang, YANG Wei. Brief discussion on treatment technology of waste volatile organic compounds \[J\]. China Environmental Protection Industry, 2012,11:4043. (in Chinese)[7]MAGUREANU M, MANDACHE N B, PARVULESCU V I, et al. Improved performance of nonthermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode[J]. Applied Catalysis B: Environmental, 2007, 74(3): 270277.[8]VAN DURME J, DEWULF J, SYSMANS W, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J]. Chemosphere, 2007, 68(10): 18211829.[9]MALIK M A, MINAMITANI Y, SCHOENBACH K H. Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor[J]. Plasma Science, IEEE Transactions on, 2005, 33(1): 5056.[10]SUBRAHMANYAM C, RENKEN A, KIWIMinsker L. Catalytic nonthermal plasma reactor for abatement of toluene[J]. Chemical Engineering Journal, 2010, 160(2): 677682.[11]NAYDENOV A, MEHANDJIEV D. Complete oxidation of benzene on manganese dioxide by ozone [J]. Applied Catalysis A: General, 1993, 97(1): 1722.

相似文献/References:

[1]王奇华,王存文*,陈苏芳,等.空气催化氧化乙二醛合成乙醛酸的研究[J].武汉工程大学学报,2008,(04):25.
 WANG Qi hua,WANG Cun wen,CHEN Su fang,et al.Synthesis of glyoxylic acid from glyoxal by air oxidation[J].Journal of Wuhan Institute of Technology,2008,(07):25.
[2]包传平,邬光东.整体催化反应器应用于催化加氢合成间苯二胺的进展[J].武汉工程大学学报,2010,(07):58.[doi:10.3969/j.issn.16742869.2010.07.015]
 BAO Chuan ping,WU Guang dong.Research progress on application of the monolith catalyst reactor for the catalytic hydrogenation of mphenylenediamine[J].Journal of Wuhan Institute of Technology,2010,(07):58.[doi:10.3969/j.issn.16742869.2010.07.015]
[3]程清蓉,李 琪,糜 昊,等.硅钨酸-锰配合物的合成及其催化活性[J].武汉工程大学学报,2015,37(06):15.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 004]
 ,,et al.Schif base manganese complex anchored to silicotungstic acid in synthesis of dodecyl chlorocetate[J].Journal of Wuhan Institute of Technology,2015,37(07):15.[doi:10. 3969/j. issn. 1674-2869. 2015. 06. 004]
[4]许梓欣,高家俊,季 凯,等.氧化铌的制备及以其催化葡萄糖制备5-羟甲基糠醛[J].武汉工程大学学报,2022,44(01):20.[doi:10.19843/j.cnki.CN42-1779/TQ.202012030]
 XU Zixin,GAO Jiajun,JI Kai,et al.Preparation of Niobium Oxide and Its Catalytic Performances During Conversion of Glucose to 5-Hydroxymethylfurfural[J].Journal of Wuhan Institute of Technology,2022,44(07):20.[doi:10.19843/j.cnki.CN42-1779/TQ.202012030]

备注/Memo

备注/Memo:
收稿日期:20140605基金项目:国家自然科学基金(51272187);湖北省自然基金创新群体(2013CFA012);湖北省高等学校优秀中青年团队项目(T201004)作者简介:王升高(1969),男.湖北天门人,教授,博士.研究方向:等离子体技术,功能复合材料,微细加工技术.
更新日期/Last Update: 2014-08-20