|本期目录/Table of Contents|

[1]宋得成1,2,徐国庆1,等.暗原色先验图像去雾改进算法[J].武汉工程大学学报,2014,(12):68-71.[doi:10. 3969/j. issn. 1674-2869. 2014. 012. 013]
 SONG De-cheng,XU Guo-qing,LU Jian-yong.Improved image defogging based on priori dark color[J].Journal of Wuhan Institute of Technology,2014,(12):68-71.[doi:10. 3969/j. issn. 1674-2869. 2014. 012. 013]
点击复制

暗原色先验图像去雾改进算法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2014年12期
页码:
68-71
栏目:
资源与土木工程
出版日期:
2014-12-31

文章信息/Info

Title:
Improved image defogging based on priori dark color
文章编号:
1674 - 2869(2014)012 - 0068 - 04
作者:
宋得成1徐国庆12*鲁建勇1
1.武汉工程大学计算机科学与工程学院, 湖北 武汉 430205;2. 智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
SONG De-cheng12 XU Guo-qing12 LU Jian-yong12
1.School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Intelligent Robot (Wuhan Institute of Technology),Wuhan 430205, China
关键词:
图像处理图像去雾暗原色先验可视化
Keywords:
image processing haze removal dark channel prior visibility
分类号:
TB35
DOI:
10. 3969/j. issn. 1674-2869. 2014. 012. 013
文献标志码:
A
摘要:
针对含雾图像的去雾增强问题,提出基于环境光调节参数的暗通道去雾改进算法,该算法考虑到使用暗原色先验算法在图像中含有较多的类似大气等场景时,会降低图像的去雾效果。首先,在含雾图像中暗原色去雾统一框架中引入环境光调节容差参数,在去雾过程中引入背景因素变化。其次,通过修正参数重新推导出准确透射率函数,并讲其应用于更新的去雾方程。最后,结合对含雾图像一本的统计,获取去雾算法的最优调节参数,该参数可以较好地适应大气环境的影响,在背景变化时可以实现对去雾效果的自适应处理。实验表明,算法可以在去雾过程结合环境背景因素的变化,在天空前景交界处能够明显改进图像去雾的效果。
Abstract:
To improve the low visibility and poor contrast of fog images,a new simple but effective image defogging algorithm based on dark channel prior algorithm was proposed. Firstly, based on the statistical analysis of the images containing fog, a physical-based parameter model was presented. Secondly, the parameter was used to modify the accurate transmittance function, and the fog equation was applied to the updated algorithm. Finally, the atmospheric light was estimated based on the statistical parameter. And the haze was removed effectively through the parameter. Experiments show that the algorithm can be combined with the change of environment factors in the defogging process. In the junction area of the sky and prospects, the haze can be obviously removed. In comparison with the traditional image defogging algorithm, the proposed method achieves faster and more natural effectiveness.,

参考文献/References:

[1] 蒋建国,侯天峰,齐美彬.改进的基于暗原色先验的图像去雾算法[J].电路与系统学报,2011,16(2):7-12.JIANG Jian-guo,HOU Tian-feng,QI Mei-bin.Improved algorithm on image haze removal using dark channel prior[J]. Journal of Circuits and systems.2011,16(2):7-12. (in Chinese)[2] 陈建鹏,毕笃彦,张晟翀.基于暗通道理论的快速单幅图像去雾算法[J].计算机工程与设计, 2014,34(4): 2047-2051.CHEN Jian-peng,BI Du-yan,ZHANG Sheng-chong Fast haze removal algorithm using dark channel prior[J]. Computer Engineering and Design. 2014,34(4): 2047-2051. (in Chinese)[3] 郭璠,蔡自兴.谢冰.图像去雾技术研究综述与展望[J].计算机应用,2010,30(9): 2417-2421.GUO Fan,CAI Zi-xing,XIE Bin.Review and prospect of image dehazing techniques[J].Journal of computer applications. 2010,30(9): 2417-2421. (in Chinese)[4] 禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011,37(2): 143-149.YU Jing,LI Da-peng,Liao Qing-min. Physics-based fast single image fog removal[J]. Acta automatica sinica 2011,37(2):143-149.(in Chinese)[5] LV X Y,CHEN W B, Shen I F. Real-Time Dehazing for Image ang Video[EB/OL]. Processdings of 18th Pacific Conference on Computer Graphics and Applications, 2010. //http://www.cad.zju.edu.cn/Project/Projectapplication/166.html.2010-9-25.[6] 禹晶,徐东彬,廖庆敏.图像去雾技术研究进展[J].中国图像图形学报, 2010,16(9): 1563-1576.YU Jing,XU Dongbin,LIAO Qingmin.Image defogging: a survey[J]. Journal of Image and Graphics. 2010,16(9):1563-1576. (in Chinese)[7] 胡伟,袁国栋,董朝.基于暗通道优先的单幅图像去雾新方法[J].计算机研究与发展.2013,47(12):2132- 2140.HU Wei,YUAN Guodong,DONG Zhao.Improved single image dehazing using dark channel prior. Journal of computer research and development. 2013,47 (12): 2132-2140. (in Chinese)[8] HE Kaiming. Single Image Haze Removal Using Dark Channel Prior[D]. Hong Kong:The Chinese University of Hong Kong,2011.[9] He Kaiming,Jian Sun and Xiaoou Tang. Guided Image Filtering[EB/OL].[10] He K,Sun J,Tang X. Single image haze removal using dark channel prior[EB/OL]. http://cvpapers.com/cvpr2009.utml.2009:10-08.

相似文献/References:

[1]杨述斌,陈艳菲,程莉.交替滤波的加权形态边缘检测算法[J].武汉工程大学学报,2009,(07):88.
 YANG Shu bin,CHEN Yan fei,CHEN Li.Weight adding morphological edge detection algorithm based on alternate filtering[J].Journal of Wuhan Institute of Technology,2009,(12):88.
[2]陈念,李进,王海晖,等.双目立体视觉测量系统的研究与实现[J].武汉工程大学学报,2011,(05):101.[doi:10.3969/j.issn.16742869.2011.05.026]
 CHEN Nian,LI Jin,WANG Haihui,et al.Research and implementation of measurement system based on binocular stereo vision[J].Journal of Wuhan Institute of Technology,2011,(12):101.[doi:10.3969/j.issn.16742869.2011.05.026]
[3]洪汉玉,王澍,朱浩,等.低对比度嵌入型钢坯字符识别方法[J].武汉工程大学学报,2012,(12):38.[doi:103969/jissn16742869201212010]
 HONG Han yu,WANG Shu,ZHU Hao,et al.Recognition method for lowcontrast embedded billet characters[J].Journal of Wuhan Institute of Technology,2012,(12):38.[doi:103969/jissn16742869201212010]
[4]秦襄培,刘 莉,郭亚娟,等.镀层厚度的自动测定[J].武汉工程大学学报,2015,37(01):64.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 014]
 ,,et al.Automatic measurement of coating thickness[J].Journal of Wuhan Institute of Technology,2015,37(12):64.[doi:10. 3969/j. issn. 1674-2869. 2015. 01. 014]
[5]刘昌辉,帅 考,杨维荣.嵌入式视觉的测距系统设计[J].武汉工程大学学报,2015,37(04):65.[doi:10. 3969/j. issn. 1674-2869. 2015. 04. 014]
 ,Design of distance measurement system based on ARM embedded vision[J].Journal of Wuhan Institute of Technology,2015,37(12):65.[doi:10. 3969/j. issn. 1674-2869. 2015. 04. 014]
[6]王学华,王华龙,马凡杰,等.柱面喷码字符的自动识别算法[J].武汉工程大学学报,2015,37(11):43.[doi:10. 3969/j. issn. 1674-2869. 2015. 11. 009]
 -,-,-,et al.Automatic recognition algorithm of cylindrical printing character[J].Journal of Wuhan Institute of Technology,2015,37(12):43.[doi:10. 3969/j. issn. 1674-2869. 2015. 11. 009]
[7]顾天雄,朱福龙*,程国开,等.隧道衬砌渗漏水红外特征模拟试验及图像处理[J].武汉工程大学学报,2017,39(01):96.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 017]
 GU Tianxiong,ZHU Fulong*,CHENG Guokai,et al.Simulation Experiment on Infrared Radiation Feature of Tunnel Lining Seepage and Image Processing[J].Journal of Wuhan Institute of Technology,2017,39(12):96.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 017]
[8]王仕仙,陈绪兵*.焊接轨迹跟踪控制中的深度视觉研究进展[J].武汉工程大学学报,2023,45(04):378.[doi:10.19843/j.cnki.CN42-1779/TQ.202303003]
 WANG Shixian,CHEN Xubing*.Progress in Vision Technology in Welding Trajectory and Control[J].Journal of Wuhan Institute of Technology,2023,45(12):378.[doi:10.19843/j.cnki.CN42-1779/TQ.202303003]

备注/Memo

备注/Memo:
收稿日期:2014-11-8基金项目:湖北省自然科学基金项目(2014CFB786);湖北省高等学校优秀中青年科技创新团队计划项目(T201206); 湖北省大学生创新创业计划项目(201410490034);湖北省教育厅深入企业行动计划项目(XD2014146); 武汉工程大学科研基金项目(12126021);武汉工程大学校长基金项目(2014062). 作者简介:宋得成(1994-),男,湖北襄阳人,研究方向:模式识别,人机交互. *通信联系人
更新日期/Last Update: 2015-01-27