|本期目录/Table of Contents|

[1]王华杰,郑来芳.电动汽车电池荷电状态估算[J].武汉工程大学学报,2015,37(10):51-56.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 010]
 .Evaluating charge state of electric vehicle battery[J].Journal of Wuhan Institute of Technology,2015,37(10):51-56.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 010]
点击复制

电动汽车电池荷电状态估算(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年10期
页码:
51-56
栏目:
机电与信息工程
出版日期:
2015-10-31

文章信息/Info

Title:
Evaluating charge state of electric vehicle battery
文章编号:
1674-2869(2015) 10-0051-06
作者:
王华杰郑来芳
太原工业学院电子工程系,山西 太原 030008
Author(s):
WANG Hua-jie ZHENG Lai-fang
Electronic of Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
关键词:
电动汽车 模糊神经网络最小二乘支持向量机电池荷电状态
Keywords:
electric vehicle fuzzy neural network least square support vector machine state of charge
分类号:
TM912
DOI:
10. 3969/j. issn. 1674-2869. 2015. 10. 010
文献标志码:
A
摘要:
为了精确估计电动汽车电池的荷电状态(SOC),将模糊神经网络和最小二乘支持向量机分别用来估计电池的SOC,然后将两种方法相结合,交替地使用来预测电池SOC. 在美国能源部纯电动汽车试验计划提供的混合工况UDDS-NYCC-US06_HWY驾驶循环实验中提取电池模型参数的充电/放电测试周期,用电池电流,电池电压和电池温度为独立变量,试验进行了80 Ah镍氢电池与动力测试周期来预测电池SOC. 结果表明,此方法不仅可以准确的估算SOC,而且能减少计算量.
Abstract:
To exactly evaluate the state of the charge(SOC) of the electric vehicle’s battery, the fuzzy neural network and least squares support vector machines were used separately at first and then the two methods were combined and employed alternately to predict the battery SOC. The battery model parameters of charging/discharging testing period were drawn from UDDS-NYCC-US06_HWY driving cyclic experiment, which was provided by the U.S. department of energy’s electrical vehicle. Using the data of battery current, voltage and temperature as the independent variables, test on an 80 Ah Ni-MH battery and the cycle of the battery’s power was conducted to predict the battery’s SOC. Results showed that the method not only can accurately estimate the SOC but also can reduce the amount of calculation.

参考文献/References:

[1] WANG Geng bo. The development of batteries in electric vehicles[J]. Hu bei Automotive Industries Institute,1996,32(12):83-86.[2] MA you-liang,CHEN quan-shi,QI zhan-ning. A research on the SOC Definition and measurement method of batteries used in EVS[J]. J Tsinghua Univ(Sci&Tech),2001,41(11):95-97.[3] 邵海岳,钟志华,何莉萍,等.电动汽车动力电池模型及SOC预测方法[J].电源技术,2004,28(10):637-640.SHAO Haiyue,ZHONG Zhihua,HE Liping,et al. The model of Electric vehicle battery and the method of SOC’s estimation[J]. Power Technology,2004,28(10):637-640.(in Chinese)[4] 裴晟,陈全世,林成涛.基于支持向量回归电池SOC估计方法研究[J]. 电源技术,2007,31(3):243-252.PEI Sheng, CHENG Shiquan,LIN Chengtao. Study on estimating method for battery state of charge based on support vector regression[J].Power Technology,2007,31(3):243-252.(in Chinese)[5] 郭桂芳,曹秉刚.电动车用Ni/MH电池组剩余容量的非线性自回归滑动平均预测[J].控制理论与应用,2011,28(4):591-595. (in Chinese) GUO Gui-fang, CAO Binggang. NARMAX method for estimating the residual capacity of Ni/MH battery pack for electric vehicle[J]. Control Theory & Applications ,2011,28(4):591-595. (in Chinese)[6] SUYKENS J A K. De Brabanter JaLukas Let alWeighted least squares support vector machines robustness and sparse approximation[J]. Neurocomputing,2002, 48(1-4):85-105.[7] 阎威武,绍惠鹤.支持向量机和最小二乘支持向量机的比较及应用[J].控制与决策,2003,18(3):18-20.YAN Wei-wu,SHAO Hui-he. Application of support vector machines and least squares support vector machines to heart disease diagnoses[J]. Control and Decision,2003,18(3):18-20. (in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期;2015-08-25基金项目:国家自然科学基金资助项目(61072121)作者简介:王华杰(1988-),女,山西太原人,助教,硕士. 研究方向:嵌入式系统及应用.
更新日期/Last Update: 2015-11-13