|本期目录/Table of Contents|

[1]覃艳蕾,丁耀彬,张广丽,等.基于前驱体热化学性质调控g-C3N4的合成[J].武汉工程大学学报,2016,38(2):109-113.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 002]
 QIN Yanlei,DING Yaobin,ZHANG Guangli,et al.Controlled Synthesis of g-C3N4 Based on Thermo-Chemical Property of Precursor[J].Journal of Wuhan Institute of Technology,2016,38(2):109-113.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 002]
点击复制

基于前驱体热化学性质调控g-C3N4的合成(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年2期
页码:
109-113
栏目:
化学与化学工程
出版日期:
2016-04-30

文章信息/Info

Title:
Controlled Synthesis of g-C3N4 Based on Thermo-Chemical Property of Precursor
作者:
覃艳蕾丁耀彬张广丽唐和清*
中南民族大学资源与环境学院,湖北 武汉 430074
Author(s):
QIN Yanlei DING Yaobin ZHANG Guangli TANG Heqing*
College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
关键词:
硫脲程序升温g-C3N4光催化
Keywords:
 thiourea programmed heating graphitic carbon nitride photocatalysis
分类号:
O613.61;O643.36
DOI:
10. 3969/j. issn. 1674-2869. 2016. 02. 002
文献标志码:
A
摘要:
提出了一种程序升温制备高光催化活性g-C3N4的方法. 以硫脲为前驱体,测得并分析了其TG/DSC曲线. 基于在不同相转变温度条件下前驱体的化学转化,采用程序升温的方法制备了类石墨相氮化碳g-C3N4 采用SEM、TEM、FTIR、DRS、PL等技术,对所制g-C3N4 的化学结构、形貌和光学性质进行了表征,并探究了不同程序升温方式对g-C3N4光催化性能的影响. 结果表明,在硫脲相转变温度为260 ℃和426 ℃各保温1 h,550 ℃保温4 h,所制g-C3N4为疏松层状堆叠的块状颗粒. 扩散反射光谱以及荧光光谱分析表明:采用该程序升温方式可提高g-C3N4光生电子-空穴对的分离效率. 以罗丹明B为模型污染物,评价了所得g-C3N4的光催化活性. 相较其它升温方式制备的g-C3N4,采用提出的程序升温热聚法制备的g-C3N4可提高罗丹明B的可见光催化降解速率达3倍. 这种光催化活性的增强主要归因于其更大的比表面积和更高的光生电子-空穴分离效率.
Abstract:
 A programmed synthesis method was developed to prepare highly efficient photocatalytic g-C3N4. The TG/DSC thermograms were acquired and analyzed by using thiourea as the precursor. g-C3N4 was prepared by programmed (a multi-step temperature control) thermal polycondensation method based on the chemical conversion of precursor at different phase transformation temperatures. The textural structures, optical and electronic properties of the g-C3N4 were systematically characterized by Scanning Electron Microscopy, Transmission Electronic Microscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Diffuse Reflectance Absorption Spectroscopy and Fluorescence Spectroscopy. The effects of the multi-step temperature control during the g-C3N4 preparation were investigated on the photocatalytic performance of g-C3N4. It was found that that the obtained g-C3N4 was composed of loosely stacked bulky sheets by keeping the temperature at 260 ℃ of the phase transformation temperature of thiourea for 1 h, then at 426 ℃ for another 1 h, and finally at 550 ℃ for 4 h. The diffuse reflectance absorption and fluorescence spectroscopic analysis indicated that the programmed synthesis promoted the dissociation of the photo-generated electron-hole pairs. The photocatalytic activity of the obtained g-C3N4 was evaluated by using RhB as a model organic pollutant. The g-C3N4 photocatalyst obtained with the presently developed programmed synthesis method increased the photocatalytic degradation rate of RhB by about 3 times in comparison with the g-C3N4 prepared by a conventional method. The enhanced photocatalytic performance of the obtained g-C3N4 was attributed to the increased specific surface area and improved separation of photo-generated electron-hole pairs.

参考文献/References:

[1] 张金水,王博,王心晨. 氮化碳聚合物半导体光催化[J]. 化学进展, 2014, 26(1):19-29.
ZHANG J S, WANG B, WANG X C. Photocatalysis on carbon nitride polymeric semiconductors[J]. Progress in chemistry, 2014, 26(1):19-29.
[2] GAO S, LOU J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced materials, 2015,27(13): 2150-2176.
[3] WANG X, BLECHERT S, ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS catalysis, 2012, 2 (8): 1596-1606.
[4] LU X, XU K, CHEN P, et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. Journal of materials chemistry A, 2014, 44(2): 18924-18928.
[5] MING L, YUE H, XU L, et al. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity[J]. Journal of materials chemistry A, 2014, 45(2): 19145-19149.
[6] XU H, YAN J, XU Y, et al. Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity[J]. Applied catalysis B: environmental, 2013,129: 182-193.
[7] 张金水,王博,王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9): 1865-1876.
ZHANG J S, WANG B, WANG X C. Chemical synthesis and applications of graphitic carbon nitride [J]. Acta physico-chimica sinica, 2013, 29(9): 1865-1876.
[8] DONG F, OU M, JIANG Y, et al. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification[J]. Industrial engineering chemistry research,2014,53(6):2318-2330.
[9] MADARASZ J, POKOL G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments[J]. Journal of thermal analysis and calorimetry, 2007, 88(2): 329- 336.
[10] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature materials, 2009(8):76-80 .
[11] CUI Y J, ZHANG J S, ZHANG G G, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution[J]. Journal of materials chemistry, 2011(21): 13032-13039.
[12] DONG F, WU L W, SUN Y J, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of materials chemistry, 2011(21) :15171-15174.

相似文献/References:

[1]蔡 念,吴有斌,唐满仓,等.杀螨隆的合成[J].武汉工程大学学报,2016,38(05):415.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 001]
 CAI Nian,WU Youbin,TANG Mancang,et al.Synthesis of Diafenthiuron[J].Journal of Wuhan Institute of Technology,2016,38(2):415.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 001]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-05-03