[1] ALBERS R E, NYSTROM M, SIVERSTROM M, et al. Development of a monolith-based process for H2O2 production: from idea to large scale implementation[J]. Catalysis today, 2001, 69:247-252. [2] SOHRABNEZHAN S, POORAHMAD A, SALAVATIYAN T. CuO-MMT nanocomposite: effective photocatalyst for the discoloration of methylene blue in the absence of H2O2[J]. Applied physics A, 2016, 122:1-12. [3] SENTHAMIZHAN A, BALUSAMY B, AYTAC Z, et al. Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2[J]. Analytical and bioanalytical chemistry, 2016, 408:1-9. [4] SEGAWA S ,OKARMU K. The use of hydrogen peroxide in clinical chemistry:application of H2O2, POD as an oxidizing reagent in modified method of Kind-King for serum[J]. Rinsho byori the Japanese journal of clinical pathology, 1978, 26:365-368. [5] TAN F, CHEN H, WU D, et al. Optimization of removal of 2-methylisoborneol from drinking water using UV/H2O2[J]. Journal of advanced oxidation technologies, 2016, 19:98-104. [6] BROWN D S, JENKE D R. Determination of sulphite and hydrogen peroxide in pharmaceutical matrices via classical spectrophotometry and flow injection[J]. Analyst, 1987, 112:899-902. [7] SANTIMONE M. Titration study of guaiacol oxidation by horseradish peroxidase[J]. Canadian journal of biochemistry, 1975, 53:649-657. [8] WANG P, WANG K, GU Y. A highly selective fluorescent turn-on NIR probe for the bioimaging of hydrogen peroxide in vitro and in vivo[J]. Sensors & actuators bchemical, 2016, 228:174-179. [9] CHEN Z, YUET, XU K, et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination[J]. Biosensors & bioelectronics, 2016, 75:8-14. [10] ZHANG R, CHEN W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors[J]. Biosensors & bioelectronics, 2016, 80:611-616. [11] WANG F, LIU X,LU C H. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors[J]. ?ACS nano, 2013, 220:7278-7286. [12] KANYON G P, RAWLINSON S, DAVIS J. A non-enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk[J]. Journal of electroanalytical chemistry, 2016, 766:147-151. [13] TATSUMA T, OKAWA Y,WATANABE T. Enzyme monolayer-and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose[J]. ?Analytical chemistry,?2002, 61:2352-2355. [14] TANG N, ZHENG J, SHENG Q, et al. A novel H2O2 sensor based on the enzymatically induced deposition of polyaniline at a horseradish peroxide/aligned single-wall carbon nanotubes modified Au electrode[J]. Analyst, 2011, 136:781-786. [15] LEI C, DENG J. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface[J]. Analytical chemistry, 1996, 68:3344-3349. [16] NGUYEN T T, NUYEN V H, DAVID R K, et al. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications[J]. Solid state sciences, 2016, 53:71-77. [17] KIVRAK H, ALALO, ATBAS D. Efficient rapid microwave-assisted route to synthesize Pt–MnOx hydrogen peroxide sensor[J]. Electrochimica acta, 2015, 176:497-503. [18] HSU C C, LO Y R, LIN Y C, et al. A spectrometric method for hydrogen peroxide concentration measurement with a reusable and cost-efficient sensor[J]. Sensors, 2014, 15:25716-25729. [19] WAN J, WANG W, YIN G, et al. Nonenzymatic H2O2 sensor based on Pt nanoflower electrode[J]. Journal of cluster science, 2012, 23:1061-1068. [20] HSIAO W H, CHEN H Y, CHENG T M, et al. Urchin-like Ag nanowires as non-enzymatic hydrogen peroxide sensor[J]. Journal of the Chinese chemical society, 2012, 59:500-506. [21] MUKOUYAMA Y, NAKANISHI S, CHIBA T, et al. Mechanisms of two electrochemical oscillations of different types, observed for H2O2 reduction on a Pt electrode in the presence of a small amount of halide ions[J]. Journal of physical chemistry B, 2010, 105:7246-7253. [22] YOU J M, KIM D, JEON S. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures[J]. Electrochimica acta, 2012, 65:288-293. [23] BHUJUN B, ANANDAN S, TAN M T. Study of ternary metal oxides as supercapacitor electrodes[J]. Wit transactions on ecology & the environment, 2014, 186:386-342. [24] RAMZAN M, LEBEGUE S, AHUJA R. Transition metal doped MgH2: a material to potentially combine fuel-cell and battery technologies[J]. International journal of hydrogen energy, 2010, 35:10373-10376. [25] SCHIMID T J, GASTEIGER H A, STAEB G D, et al. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration[J]. Journal of the electrochemical society, 1998, 145:2354- 2358. [26] NERLE U. Thermal oxidation of copper for favorable formation of cupric oxide (CuO) semiconductor[J]. Iosr journal of applied physics, 2013, 5:1-7. [27] GUO Y. Urchin-like Pd@CuO-Pd yolk-shell nanostructures: synthesis, characterization and electrocatalysis[J]. Journal of materials chemistry A, 2015, 3:13653-13661. [28] SIDDIQUI H, QURESHI M S, HQQUE F Z. Valuation of copper oxide (CuO) nanoflakes for its suitability as an absorbing material in solar cells fabrication[J]. International journal for light and electron optics, 2016, 77:305-314. [29] ASANO K, MATSUBARA S. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection[J]. Talanta, 2010, 80:1648-1652. [30] WANG P, NG Y H, AMAL R. Embedment of anodized p-type CuO thin films with CuO nanowires for improvement in photoelectrochemical stability[J]. Nanoscale, 2013, 5:2952-2958. [31] WANG F, KALAM A, CHANG L, et al. Rapid microwave assisted synthesis of ball-in-ball CuO microspheres and its application as a H2O2 sensor[J]. Materials Letters, 2013, 92:96-99. [32] ZHANG P, GUO D, LI Q. Manganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2[J]. Materials letters, 2014, 125:202-205. [33] SCAVETTA E, BALLARIN B, TONELLI D. A cheap amperometric and optical sensor for glucose determination[J]. Electroanalysis, 2010, 22:427-432. [34] QING X X, YU K, WANG X F, et al. Synthesis and characterization of Co3O4 nanoflowers for lithium ion batteries[J]. Advanced materials research, 2013, 849:147-150. [35] KIM M. Introduction of Co3O4 into activated honeycomb-like carbon for the fabrication of high performance electrode materials for supercapacitors[J]. Physical chemistry chemical physics, 2016, 18:9124-9132. [36] XUE X Y, YUAN S, XIANG L L, et al. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes[J]. Chemical communications, 2011, 47:4718-4720. [37] WANG M, JIANG X, LIU J, et al. Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template free method[J]. Electrochimica acta, 2015, 182:613-620. [38] INOUE H, HAZE A, CHIKU M, et al. Ethanol oxidation reaction on tandem-type Pt/Rh/SnOx electrocatalysts[J]. Proceedings of the national academy of sciences of the United States of America, 1986, 83:7731-7735. [39] TSUKAMOTO D, SHIRO A, SHIRRAI Y, et al. Photocatalytic H2O2 Production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles[J]. Acs catalysis, 2012, 2:599-603. [40] SONG H, NI Y, KOKOT S. A novel electrochemical sensor based on the copper-doped copper oxide nano-particles for the analysis of hydrogen peroxide[J]. Colloids & surfaces a physicochemical & engineering aspects, 2015, 465:153-158. [41] KHAN S B, RAHMAN M M, ASIRI A M, et al. Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2[J]. Physica E: low-dimensional systems and nanostructures, 2014, 62:21-27. [42] BAITHA P K, PAL P P, MANAM J. Dosimetric sensing and optical properties of ZnO-SnO2 nanocomposites synthesized by co-precipitation method[J]. Nuclear instruments & methods in physics research, 2014, 74:91-98. [43] ZHANG G, PAN X, WANG L. Doped TiO2 and TiO2 nanotubes: synthesis and applications[J]. International journal of impact engineering, 2013, 7:77-86. [44] JANYASUPAB M, LIUC W, ZHANG Y, et al. Bimetallic Pt-M (M=Cu, Ni, Pd, and Rh) nanoporous for H2O2 based amperometric biosensors[J]. Sensors & actuators b chemical, 2013, 179:209-214. [45] YANG Z, ZHANG L, ZHANGY, et al. Rational design of CuO@Cu nanostructure with tuneable morphology and electrochemical properties[J]. Rsc advances, 2014, 4:8121-8124. [46] AN X, TENG F, ZHANG P, et al. Enhanced photo electrochemical sensor based on ZnO-SnO2 composite nanotubes[J]. Journal of alloys & compounds, 2014, 614:373-378. [47] BAUGHMAN R H, ZAKHIiDOVA A, HEERW A D. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297:787-792. [48] QIANG X L, WANG Z H, XIA J F, et al. In situ growth of copper nanoparticles on carbon nanotubes and its application for electrocatalysis of hydrogen peroxide[J]. Journal of analysis laboratory, 2012, 31:13-18. [49] LIN Y, CHEN X, LIN Y, et al. Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide[J]. Microchimica acta, 2015, 182:1803-1809. [50] GEIM A K. Random walk to graphene[J]. Angewandte chemie international edition, 2011, 50:6966- 6985. [51] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature materials, 2007, 6:183-191. [52] WANG M Y, SHEN T, WANG M, et al. One-pot synthesis of alpha-Fe2O3 nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor[J]. Sensors & actuators b chemical, 2014, 190:645-650. [53] DEVASENATHIPATHY R, KOHILARENI K, CHENB S M, et al. Electrochemical preparation of biomolecule stabilized copper nanoparticles decorated reduced graphene oxide for the sensitive and selective determination of hydrogen peroxide[J]. Electrochimica acta, 2016, 191:55-61. [54] CINTI S, ARDUINI F, VELLUCCI G, et al. Carbon black assisted tailoring of prussian blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen printed electrode[J]. Electrochimica acta,2014,47:63-66. [55] YOO E, NAKAMURA J, ZHOU H S. N-doped graphene nanosheets for li-air fuel cells under acidic conditions[J]. Energy & environmental science, 2012,5:6928- 6932. [56] ZHANG X P, LIU D, YU B, et al. A novel nonenzymatic hydrogen peroxide sensor based on electrospun nitrogen-doped carbon nanoparticles-embedded carbon nanofibers film[J]. Sensors & actuators b chemical, 2016, 224:103-109. [57] REICHA F M, SOLIMAN M A, SHABAN A M, et al. Conducting polymers[J]. Journal of materials science, 1990, 26(4):1051-1055. [58] YANG M, KIM D S, YOON J H,?et al. Nanopillar films with polyoxometalate doped polyaniline for electrochemical detection of hydrogen peroxide[J]. Analyst, 2016, 141(4):1319-1324. [59] LI Y, ZHANG P, OUYANY Z, et al. Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane-modified electrode, and super performance for electrochemical sensing[J]. Advanced functional materials, 2015, 8(2):133-142. [60] LIANG H G, ZHENG L P, LIAO S J. Self-humidifying membrane electrode assembly prepared by adding PVA as hygroscopic agent in anode catalyst layer[J]. International journal of hydrogen energy, 2012, 37(17): 12860-12867.
[1]杜飞鹏,王晶晶,叶恩洲,等.窄分布Ag纳米粒子担载碳纳米管检测过氧化氢[J].武汉工程大学学报,2011,(10):61.
DU Fei peng,WANG Jing jing,et al.Narrow size distribution silver nanoparticle loaded carbon nanotubesfor hydrogen peroxide determination[J].Journal of Wuhan Institute of Technology,2011,(4):61.
[2]万其进,尚艳利,汪召豪,等.电纺聚乙烯醇纳米纤维膜无酶过氧化氢传感器的制备[J].武汉工程大学学报,2013,(08):7.[doi:103969/jissn16742869201308002]
WAN Qi jin,SHANG Yan li,WANG Zhao hao,et al.Preparation of hydrogen peroxide nonenzyme biosensor based onPVA nanofibers film by electrospinning[J].Journal of Wuhan Institute of Technology,2013,(4):7.[doi:103969/jissn16742869201308002]
[3]易 琼,邹 彬,欧阳贻德 *,等.醇析法合成过碳酸钠的工艺条件[J].武汉工程大学学报,2014,(12):34.[doi:10. 3969/j. issn. 1674-2869. 2014. 012. 007]
YI Qiong,ZOU Bin,OUYANG Yi-de,et al.Process conditions of synthesis sodium percarbonate by ethanol deposition method[J].Journal of Wuhan Institute of Technology,2014,(4):34.[doi:10. 3969/j. issn. 1674-2869. 2014. 012. 007]