|本期目录/Table of Contents|

[1]李文昭,黄志良*,陈常连,等.过渡元素掺杂固体电解质的制备及电性能[J].武汉工程大学学报,2016,38(4):350-356.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 008]
 LI Wenzhao,HUANG Zhiliang*,CHEN Changlian,et al.Preparation of Transition Elements Doped Solid Electrolyte and Its Electrical Properties[J].Journal of Wuhan Institute of Technology,2016,38(4):350-356.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 008]
点击复制

过渡元素掺杂固体电解质的制备及电性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年4期
页码:
350-356
栏目:
材料科学与工程
出版日期:
2016-08-28

文章信息/Info

Title:
Preparation of Transition Elements Doped Solid Electrolyte and Its Electrical Properties
作者:
李文昭黄志良*陈常连陈 娟夏红亮
武汉工程大学材料科学与工程学院, 湖北 武汉 430074
Author(s):
LI Wenzhao HUANG Zhiliang* CHEN Changlian CHEN Juan XIA Hongliang
School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
燃烧合成硅酸镧固体电解质掺杂电导率
Keywords:
combustion synthesis lanthanum silicate solid electrolyte doping conductivity
分类号:
TM911.3
DOI:
10. 3969/j. issn. 1674?2869. 2016. 04. 008
文献标志码:
A
摘要:
为了解决固体氧化物电解质在中温范围(500 ℃~800 ℃)工作电导效果不佳的问题,采用燃烧合成方法以氧化镧及过渡离子氧化物为原料,制备了过渡金属元素掺杂的硅酸镧体系电解质材料. 用X-射线衍射图谱、扫描电子显微镜以及红外光谱对所得电解质进行了物相和显微结构分析. 研究表明,掺杂离子对电解质的物相结构及形貌影响很小,但是通过引入适量过渡掺杂离子,能够有效提高电解质的电导率. 当掺杂量摩尔比x=1.0时,锌掺杂后硅酸镧电解质具有最高的离子电导率,在500 ℃时的电导率可达2.106×10-2 S/cm. 相比于未掺杂电解质在500 ℃电导率为1.71×10-3 S/cm有了显著提升. 元素铜的掺入对电解质的致密度有促进作用,压片和二次烧结后电解质的密度达94.1%. 同时通过交流阻抗测试分析证实镍在硅位掺杂会降低电解质的电导率.
Abstract:
To improve the ionic conductivity of solid oxide electrolyte at the middle temperatures of 500 ℃-800 ℃, we synthesized the solid oxide electrolyte of apatite type lanthanum silicate by combustion method using La2O3 and transition oxide as raw materials. The phase and microscopic structure of as-prepared electrolytes were investigated by X-ray diffraction, scanning election microscopy and infrared spectroscopy. The results show that the ionic conductivity of electrolyte is effectively improved with proper amount of transition ion doping. And the effects of transition ion dopants on crystal structure, phase and morphology of apatite type lanthanum silicate are minimal. The electrolyte doped with zinc reaches the highest ionic conductivity of 2.106×10-2 S/cm at 500 ℃ when the doping molar ratio is 1.0, showing a significant increase of electronic conductivity compared to un-doped electrolyte of 1.71×10-3 S/cm at the same temperature. The relative density of apatite type lanthanum silicate electrolyte is promoted by the copper dopant. After tableting and secondary sintering, the relative density of copper doped electrolyte reaches 94.1%. Meanwhile, the result of electrochemical impedance spectroscope confirmes that nickel in silicon doping reduces the ionic conductivity of the electrolyte.

参考文献/References:

[1] ZHANG L, H H Q, W H, et al. Synthesis and characterization of doped La9ASi6O26.5 (A= Ca, Sr, Ba) oxyapatite electrolyte by a water-based gel-casting route[J]. International journal of hydrogen energy, 2011, 36(11): 6862-6874. [2] WEN H Y, GU Y P, LI L. Synthesis and ionic conduction of cation-deficient apatite La 9.332-x/3 MxSi6O26 doped with Mg, Ca, Sr[J]. Chinese journal of chemical engineering, 2008, 16(3): 488-491. [3] KHARTON V V, SHAULA A L, PATRAKEEV M V, et al. Oxygen ionic and electronic transport in apatite-type solid electrolytes[J]. Journal of the electrochemical society, 2004, 151(8): A1236-A1246. [4] FENG L, JIN J, ZHANG H. Advances in the research of apatite-type low-temperature solid electrolyte material[J]. Bulletin of the Chinese ceramic society, 2006, 25(4):137-141. [5] SAMSOM J E H, KENDRICK E, TOLCHARD J R, et al. A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates[J]. Journal of solid state electrochemistry, 2006, 10(8): 562-568. [6] 田长安, 刘俊亮, 蔡俊,等. 溶胶凝胶-自燃烧法合成La9.33Si6O26粉体[J]. 无机材料学报, 2008, 23(1):77-81. TIAN C A, LIU J L,CAI J,et al. Synthesis of La9.33Si6O26 Single-phase ultrafine powder by sol-gel self-combustion method[J]. Journal of inorganic materials, 2008, 23(1):77-81. [7] 张兰, 何洪泉, 蒋三平, 等. 磷灰石结构电解质 La10-xSi6O27-1.5 x 的合成及电性质[J]. 电源技术, 2009, 33(11): 980-984. ZHANG L, HE H Q, JIANG S P, et al. Synthesis and conducting properties of La10-xSi6O27-1.5x[J]. Chinese journal of power sources, 2009. [8] 田立朋, 任志华. 磷灰石结构硅酸镧氧离子导体的研究进展[J]. 材料导报:纳米与新材料专辑, 2012, 26(2):216-219. TIAN L, REN Z. Progress of the research on apatite-type lanthanum silicate oxide-ion conductor [J]. Materials review, 2012(2):216-219. [9] 胡威峰, 喻俊, 曹江雄,等. 磷灰石型La9.33(SiO4)6O2电解质的烧结及性能[J]. 武汉工程大学学报, 2011, 33(1):48-53. HU W F, YU J, CAO J X, et al. Research of sintering and property of lanthanum silicate oxyapatite electrolyte materials[J]. Journal of Wuhan institute of technology, 2011,33(1):48-53. [10] LI Y, LIU H, SHEN Z, et al. Effect of ZnO and CuO sintering additives on the properties of KNN piezozelectric ceramic[J]. China ceramics, 2011, 47(10):28-31. [11] 陈亚男, 喻俊, 黄志良,等. Sr和Nd掺杂对La9.33(SiO4)6O2电解质性能的影响[J]. 武汉工程大学学报, 2011, 33(9):39-45. CHEN Y N, YU J, HUANG Z L, et al. Influence of Sr and Nd doping on performance of apatite La9.33(SiO4)6O2 electrolyte[J]. Journal of Wuhan institute of technology, 2011,33(9):39-45. . [12] ISLAM M S. An apatite for fast oxide ion conduction[J]. Chemical communications, 2003, 13(13):1486-1487. [13] KENDRICK E, ISLAM M S, SLATER P R. Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties[J]. Journal of materials chemistry, 2007, 17(30):3104-3111. [14] 韩炳旭, 王岭, 戴磊, 等. 磷灰石型硅酸镧基氧离子导体研究进展[J]. 功能材料, 2013, 44(B06): 21-27. HAN B, WANG L, DAI L, et al. Progresses in development of apatite-type lanthanum silicate-based oxide ion conductors[J]. Journal of functional materials, 2013, 44(B06): 21-27.

相似文献/References:

[1]黄志良,鲁冕,石月,等.碱土掺杂硅酸镧电解质材料的制备与性能[J].武汉工程大学学报,2012,(11):44.[doi:103969/jissn16742869201211010]
 HUANG Zhi liang,LU Mian,SHI Yue,et al.Preparation and performance of Lanthanum silicate electrolyte materials doped alkali earth[J].Journal of Wuhan Institute of Technology,2012,(4):44.[doi:103969/jissn16742869201211010]
[2]雷 红,李文昭,马 东,等.锌掺杂La9.33(SiO4)6O2电解质的制备与电导率研究[J].武汉工程大学学报,2018,40(04):400.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 010]
 LEI Hong,LI Wenzhao,MA Dong,et al.Preparation of Zn Doped La9.33(SiO4)6O2 Electrolyte and Its Conductivity[J].Journal of Wuhan Institute of Technology,2018,40(4):400.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 010]
[3]吴昌胜,雷 红,黄江胜,等.锶锌双掺杂磷灰石型硅酸镧电解质的制备与表征[J].武汉工程大学学报,2019,(05):453.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 008]
 WU Changsheng,LEI Hong,HUANG Jiangsheng,et al.Preparation and Characterization of Strontium and Zinc DopedApatite Lanthanum Silicate Electrolyte[J].Journal of Wuhan Institute of Technology,2019,(4):453.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 008]
[4]姜 媛,黄志良*,陈常连*,等.铝掺杂磷灰石型硅酸镧电解质的电导机理[J].武汉工程大学学报,2022,44(01):48.[doi:10.19843/j.cnki.CN42-1779/TQ.202010006]
 JIANG Yuan,HUANG Zhiliang*,CHEN Changlian*,et al.Conductance Mechanism of Al-Doped Apatite-Type Lanthanum Silicate Electrolyte[J].Journal of Wuhan Institute of Technology,2022,44(4):48.[doi:10.19843/j.cnki.CN42-1779/TQ.202010006]
[5]胡威峰,喻俊,曹江雄,等.磷灰石型La9.33(SiO4)6O2电解质的烧结及性能[J].武汉工程大学学报,2011,(01):48.[doi:10.3969/j.issn.16742869.2011.01.013]
 HU Wei feng,YU Jun,CAO Jiang xiong,et al.Research of sintering and property of lanthanum silicate oxyapatite electrolyte materials[J].Journal of Wuhan Institute of Technology,2011,(4):48.[doi:10.3969/j.issn.16742869.2011.01.013]
[6]陈亚男,喻俊,黄志良*,等.Sr和Nd掺杂对La9.33(SiO4)6O2电解质性能的影响[J].武汉工程大学学报,2011,(09):39.
 CHEN Yanan,YU Jun,HUANG Zhiliang,et al.Influence of Sr and Nd doping on performance of apatite La9.33(SiO4)6O2 electrolyte[J].Journal of Wuhan Institute of Technology,2011,(4):39.
[7]陈 石,黄志良*,吴昌胜,等.钐和锌双掺杂La9.33(SiO4)6O2电解质的制备及其电导率[J].武汉工程大学学报,2021,43(05):520.[doi:10.19843/j.cnki.CN42-1779/TQ.201910028]
 CHEN Shi,HUANG Zhiliang*,WU Changsheng,et al.Preparation of Sm and Zn Double Doped La9.33(SiO4)6O2 Electrolyte and Its Conductivity[J].Journal of Wuhan Institute of Technology,2021,43(4):520.[doi:10.19843/j.cnki.CN42-1779/TQ.201910028]

备注/Memo

备注/Memo:
更新日期/Last Update: 2016-07-29