|本期目录/Table of Contents|

[1]洪玉元,孟 柱,许梦莹,等.介孔二氧化锡纳米材料的臭氧气敏性能[J].武汉工程大学学报,2016,38(06):554-559.[doi:10. 3969/j. issn. 1674 2869. 2016. 06. 008]
 HONG Yuyuan,MENG Zhu,XU Mengying,et al.Ozone Gas-Sensing Properties of Mesoporous SnO2 Nanomaterials[J].Journal of Wuhan Institute of Technology,2016,38(06):554-559.[doi:10. 3969/j. issn. 1674 2869. 2016. 06. 008]
点击复制

介孔二氧化锡纳米材料的臭氧气敏性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年06期
页码:
554-559
栏目:
材料科学与工程
出版日期:
2016-12-15

文章信息/Info

Title:
Ozone Gas-Sensing Properties of Mesoporous SnO2 Nanomaterials
作者:
洪玉元孟 柱许梦莹陈紫伟杨 静林志东*
等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430074
Author(s):
HONG Yuyuan MENG Zhu XU Mengying CHEN Ziwei YANG Jing LIN Zhidong*
Hubei Key Laboratory of Plasma Chemical and Advanced Materials(Wuhan Institute of Technology), Wuhan 430074, China
关键词:
臭氧传感器介孔二氧化锡纳米材料气敏
Keywords:
ozone sensor mesoporous SnO2 nanomaterials gas-sensing
分类号:
TP212.2
DOI:
10. 3969/j. issn. 1674 2869. 2016. 06. 008
文献标志码:
A
摘要:
以葡萄糖缩合的碳球为模板,由SnCl4水热反应制备介孔结构的二氧化锡纳米材料,通过X射线衍射、扫描电子显微镜和透射电镜等表征介孔材料的结构和形貌,发现制备的二氧化锡为四方晶系金红石结构,晶粒尺寸13.8 nm. 以二氧化锡为敏感材料制作气敏元件,并测试了气敏元件在100 ℃~420 ℃温度范围内的气敏性能. 结果表明在200 ℃时,介孔结构的二氧化锡气敏元件对体积分数为1×10-4的臭氧的灵敏度为2 089,最低检测浓度低于3×10-6(S=28),气敏响应时间16 s,恢复时间40 s. 在此条件下,该气敏元件具有灵敏度高、检测浓度低、响应恢复快等优点,具有商业应用价值.
Abstract:
Mesoporous SnO2 was prepared via hydrothermal process of SnCl4,using carbon spheres as the template by condensation reaction of glucose.The structure and morphology of the mesoporous SnO2 were characterized by X-ray Diffraction,Scanning Electronic Microscopy and Transmission Electron Microscopy. The mesoporous SnO2 possesses a tetragonal rutile structure with the grain size of 13.8 nm. The gas sensor was fabricated with the mesoporous SnO2 and its gas performances were investigated at 100 ℃-420 ℃. The results show that the sensitivity of mesporous SnO2 to volume fraction of 1×10-4 ozone is 2 089 at 200 ℃,and the lowest detection concentration is less than volume fraction of 3×10-6 (S=28),the response time is 16 s and the recovery time is 40 s. The gas-sensing sensor possesses the properties of high sensitivity,low detection concentration and quick response/recovery under this condition,which has commercial value.

参考文献/References:

[1] TOMOYA A,FUMIAKI M,TOMOAKI I,et al. The use of ozone generated by surface discharge for advanced agriculture[C]// 4th International congress on advanced applied informatics,July 12-16,2015,Okayama Convention Center,Okayama,Japan. Washington, D C:IEEE computer society conference publishing services ,2015: 678-681. [2] GERRITY D,PISARENKO A N,MARTI E J,et al. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation[J]. Water research,2014,72: 251-261. [3] GONCALVES A A. Ozone as a safe and environmentally friendly tool for the seafood industry [J]. Journal of aquatic food product technology,2015,25(5): 210-229. [4] MALLEY C S,HEAL M R,MILLS G,et al. Trends and drivers of ozone human health and vegetation impact metrics from UK EMEP supersite measurements (1990-2013) [J]. Atmospheric chemistry and physics,2015,15(2): 1869-1914. [5] SILVA R A. Climate change, air quality and human health: quantifying the global mortality impacts of present and future ozone and PM2.5 ambient air pollution [D]. Chapel Hill,NC: The University of North Carolina at Chapel Hill, 2015. [6] ROBERT S, R?KA K, LUCIAN C. Multi-model assessment of tropospheric ozone pollution indices of risk to human health and crops,and ozone deposition in Ciuc Depression-Romania [J]. Revista de chimie(bucharest-original edition),2016,67(3):408-413. [7] THWE A A,VERCAMBRE G,GAUTIER H,et al. Response of photosynthesis and chlorophyll fluorescence to acute ozone stress in tomato (Solanum lycopersicum Mill.) [J]. Photosynthetica,2014,52(1): 105-116. [8] GHUDE S D, CHINMAY J, CHATE D M, et al. Reductions in India’s crop yield due to ozone [J]. Geophysical research letters,2014,41(15): 5685-5691. [9] KLAUSl D, KLAWINSKI D, AMREHN S, et al. Light-activated resistive ozone sensing at room temperature utilizing nanoporous In2O3, particles: influence of particle size [J]. Sensors and actuators B: chemical,2015,217: 181-185. [10] KIRIAKIDIS G,MOSCHOVIS K,KORTIDIS I,et al. Highly sensitive lnOx ozone sensing films on flexible substrates[J]. Journal of sensors,2009,2009: 727893-1-727893-5. [11] EPIFANI M,COMINI E,ARBIOL J,et al. Chemical synthesis of In2O3, nanocrystals and their application in highly performing ozone-sensing devices[J]. Sensors and actuators B: chemical,2008,130(1): 483-487. [12] AGUIR K,SODI F C,COLINDRES S C,et al. Ozone sensing based on palladium decorated carbon nanotubes [J]. Sensors,2014,14(4): 6806-6818. [13] GUDER F,YANG Y,MENZEL A,et al. Superior functionality by design: selective ozone sensing realized by rationally constructed high-index ZnO surfaces [J]. Small,2012,8(21): 3307-3314. [14] CATTO A C, SILVA L F D,RIBEIRO C,et al. An easy method of preparing ozone gas sensor based on ZnO nanorods [J]. Rsc advances,2015,5(25): 19528- 19533. [15] PARK S, AN S, KO H, et al. Synthesis of nanograined ZnO nanomires and their enhanced gas sensing properties [J]. ACS applied materials & inferfaces, 2012,4(7):3650-3656. [16] KADIR R A,LI Z,SADEK A Z, et al. Electrospun granular hollow snO2 nanofibers hydrogen gas sensors operating at low temperatures [J]. Journal of physical chemistry C,2014,118(6): 3129-3139. [17] ZHONG C, LIN Z D, GUO F, et al. Synthesis,characterization,and gas-sensing properties of mesoporous nanocrystalline SnxTi1-xO2 [J]. Journal of nanoscience and nanotechnology,2015,15(6): 4296-4303. [18] REN J,XU G,XU S M,et al. A novel solvothermal synthesis of high-surface-area SnO2 nanocrystals[J]. Sensor letters,2008,6(6): 1033-1036. [19] CHO Y H,LIANG X,KANG Y C,et al. Ultrasensitive detection of trimethylamine using Rh-doped SnO2, hollow spheres prepared by ultrasonic spray pyrolysis [J]. Sensors and actuators B: chemical,2015,207: 330-337. [20] MILLS S, LIM M, LEE B, et al. Atomic layer deposition of SnO2 for selective room temperature low ppb level O3 sensing [J]. ECS journal of solid state science and technology,2015,4(10) : 3059-3061. [21] LIU J,LUO T,MOULI T S, et al. A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application[J]. Chemical communications,2010,46(3): 472-474. [22] LEE C Y, KIM S J, HWANG I S, et al. Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres [J]. Sensors and actuators B: chemical,2009,142(1): 236-242. [23] WANG H, QU Y, CHEN H, et al. Highly selective n-butanol gas sensor based on mesoporous SnO2,prepared with hydrothermal treatment [J]. Sensors and actuators B: chemical,2014,201: 153-159. [24] DONG Q, SU H, XU J, et al. Influence of hierarchical nanostructures on the gas sensing properties of SnO2, biomorphic films[J]. Sensors and actuators B: chemical,2007,123(1): 420-428. [25] SHINDE V R, GUJAR T P, LOKHANDE C D. Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization [J]. Sensors and actuators B: chemical,2007,123(2): 701-706. [26] ROCHA L S R,FOSCHINI C R,SILVA C,et al. Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route[J]. Ceramics international,2016,42(3): 4539-4545. [27] ZHU Z,CHANG J L,WU R J. Fast ozone detection by using a core-shell Au@TiO2, sensor at room temperature [J]. Sensors and actuators B: chemical,2015,214: 56-62. [28] LYU M,CAO J J,WANG Y,et al. Cu-Al-O nanofi bers fabricated by electrospinning and their ozone sensing properties at room temperature [J]. Journal of Wuhan university of technology(materials science edition),2015, 30(3): 463-466. [29] OUALI H, LAMBERT-MAURIAT C, RAYMOND L,et al. Mechanism of O3 sensing on Cu2O(111) surface: first principle calculations[J]. Applied surface science,2015,351: 840-845.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-12-23