|本期目录/Table of Contents|

[1]袁 泉,邹 冲,闵 锋*.双目视觉在类人机器人测距中的应用[J].武汉工程大学学报,2017,39(02):193-198.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 016]
 YUAN Quan,ZOU Chong,MIN Feng*.Application of Binocular Vision Range Measuring in Humanoid Robots[J].Journal of Wuhan Institute of Technology,2017,39(02):193-198.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 016]
点击复制

双目视觉在类人机器人测距中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年02期
页码:
193-198
栏目:
机电与信息工程
出版日期:
2017-05-04

文章信息/Info

Title:
Application of Binocular Vision Range Measuring in Humanoid Robots
作者:
袁 泉1邹 冲2闵 锋2*
1. 昆明理工大学信息工程与自动化学院,云南 昆明 650504;2. 武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
YUAN Quan1 ZOU Chong2 MIN Feng2*
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China;2. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
类人机器人双目视觉目标识别双目测距立体匹配
Keywords:
humanoid robot binocular vision object recognition binocular ranging stereo matching
分类号:
TP242
DOI:
10. 3969/j. issn. 1674?2869. 2017. 02. 016
文献标志码:
A
摘要:
为实现类人机器人对复杂目标高精度识别并测量出目标实际距离,提出一种双目目标识别与测距方法. 首先利用棋盘标定法对摄像机进行标定并捕获图像;然后利用局部二值模式算子(LBP)和优化后支持向量机(SVM)对目标进行识别;在识别的基础上,再采用尺度不变特征变换(SIFT)算法对特征点进行匹配并根据三角测距原理计算出目标实际距离. 实验结果表明该方法不但减少了人为参数指定,并且提高了特征点匹配效率,测距精度能够达到94%以上,满足类人机器人高精度测距和实时性要求.
Abstract:
To realize the idea that humanoid robots can recognize complicated targets with high accuracy and measure the actual distance of the target, a binocular method was proposed for recognizing target and measuring distance. Firstly, the camera calibration was realized by the checkerboard method to capture images afterwards.Then Local Binary Pattern operator and optimized Support Vector Machine were employed to identify the target. On the basis of recognition, Scale-invariant Feature Transform algorithm was used to match feature points and to determine the actual distance based on the principle of triangulation. Experimental results show that this method can reduce the designation of artificial parameters and improve the efficiency of matching features, and the accuracy of measuring actual distance is more than 94%, satisfying real-time and high-accuracy requirements of humanoid robots.

参考文献/References:

[1] 李旭港. 计算机视觉及其发展与应用[J]. 中国科技纵横, 2010(6):42. LI X G. Computer vision and its development and application[J]. China Science & Technology , 2010(6):42. [2] 张蓬,王金磊,赵弘. 机器人双目立体视觉测距技术研究与实现[J]. 计算机测量与控制,2013,21(7):1775-1778. ZHANG P,WANG J L,ZHAO H. Research and implementation of robotic binocular visual distance measuring technology[J]. Computer Measurement & Control,2013,21(7):1775-1778. [3] 沈彤, 刘文波, 王京. 基于双目立体视觉的目标测距系统[J]. 电子测量技术, 2015, 38(4):52-54. SHEN T,LIU W B,WANG J. Distance measurement system based on binocular stereo vision[J]. Electronic Measurement Technology, 2015, 38(4):52-54. [4] 时洪光, 张凤生, 郑春兰. 基于双目视觉的目标定位系统设计[J]. 现代仪器与医疗,2010, 16(4):45-47. SHI H G,ZHANG F S,ZHENG C L. Design of target location system based on binocular vision[J]. Modern Instruments & Medical Treatment,2010,16(4):45-47. [5] 姜雨彤,杨进华,刘钊,等. 双目CCD测距系统的高精度标定[J]. 计算机工程,2013,39(7):228-232. JIANG Y T,YANG J H,LIU Z, et al. High precision calibration of binocular CCD ranging system[J]. Computer Engineering, 2013, 39(7):228-232. [6] 陈念,李进,王海晖. 双目立体视觉测量系统的研究与实现[J]. 武汉工程大学学报,2011,33(5):101-105. CHEN N,LI J,WANG H H. Research and implementation of measurement system based on binocular stereo vision[J]. Journal of Wuhan Institute of Technology, 2011, 33(5):101-105. [7] 杨明, 王海晖, 陈君,等. 双目标定系统精度提高的方法[J]. 武汉工程大学学报, 2012, 34(1):69-73. YANG M,WANG H H,CHEN J, et al. Methods of accuracy improvement based on binocular calibration system[J]. Journal of Wuhan Institute of Technology, 2012, 34(1):69-73. [8] 汪柏胜,高幼年,沈文忠. 基于OpenCV的摄像机标定方法的实现[J]. 上海电力学院学报,2010,26(4):383-386. WANG B S,GAO Y N,SHEN W Z. Method on camera calibration based on OpenCV[J]. Journal of Shanghai University of Electric Power, 2010,26(4):383-386. [9] OJALA T, PIETIK, LNEN M, et al. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.[10] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167. [11] 严云洋, 唐岩岩, 刘以安,等. 使用多尺度LBP特征和SVM的火焰识别算法[J]. 山东大学学报(工学版), 2012, 42(5):47-52. YAN Y Y,TANG Y Y,LIU Y A,et al. Flame detection based on LBP features with multi-scales and SVM[J]. Journal of Shandong University(Engineering Science), 2012, 42(5):47-52. [12] 赵强, 崔畅. 基于多尺度LBP和SVM的掌纹识别算法研究[J]. 激光杂志, 2015(1):27-30. ZHAO Q,CUI C. Research of palmprint identification algorithm based on multiscale LBP and SVM[J]. Laser Journal, 2015(1):27-30. [13] 吴楚,刘士荣,杨帆,等. 基于极线约束的SIFT特征匹配算法研究[J]. 南京理工大学学报(自然科学版),2011,35(增刊):78-84. WU C,LIU S R,YANG F,et al. Research on SIFT feature matching based on epipolar constraint[J]. Journal of Nanjing University of Science and Technology(Nature Science),2011,35(suppl.):78-84. [14] BRADSKI G, KAEBLER A. Learning OpenCV: computer vision with the OpenCV library[M]. Beijing: Tsinghua University Press,2009. [15] 邹乐强. 最小二乘法原理及其简单应用[J]. 科技信息,2010,23(2):282-283. ZOU L Q. Least square method and its simple application[J]. Science & Technology Information,2010,23(2):282-283.

相似文献/References:

[1]刘军,李娜*,刘鹏.双目视觉立体标定方法的改进[J].武汉工程大学学报,2013,(10):68.[doi:103969/jissn16742869201310014]
 LIU Jun,LI Na,LIU Peng.Improvement of stereo calibration of binocular vision method[J].Journal of Wuhan Institute of Technology,2013,(02):68.[doi:103969/jissn16742869201310014]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-04-25